The Man Who Drank Too Much

Brian Le1, BSc, MD '00, Brian Nicholson2, MD

1 Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia
2 Department of Diagnostic Imaging, QEII Health Sciences Centre, Halifax, Nova Scotia

A 35-year-old male presents with excessive thirst and urination of abrupt onset which he dates back to getting married 2 years ago. He awakens to drink and urinate 5 times nightly. There is no other significant medical or family history. Results on physical exam were unremarkable. Serum electrolytes, urea, creatinine, calcium, phosphate, and liver function tests were all within normal limits. Urine analysis revealed low specific gravity and osmolality, at 1.005 (Normal: > 1.015) and 190 mOsm/kg (Normal: 700 – 1400 mOsm/kg) respectively (1).

Q1: What would be your differential diagnosis for this patient?
Q2: How would you distinguish amongst the polyuric syndromes?
Picture Your Practice Here

Prince Edward Island: A Great Place to Live, Work and Play

For information on physician opportunities contact:
Dr. Don Ling
Physician Recruitment Coordinator
Health and Social Services
PO Box 2000
Charlottetown
P.E.I. C1A 7N8

Tel: 902 368 6131
E-mail: tdling@this.org

Health and Social Services

sanofi-synthelabo

Sanofi-Synthelabo, a global healthcare company built on the successes of an innovative worldwide R&D organization, congratulates the 1999 graduates for all their passion and commitment.

...Because Health Matters L'essentiel c'est la santé

Sanofi-Synthelabo, un groupe pharmaceutique global, construit grâce aux succès d'une Recherche mondiale innovante, tient à féliciter les diplômés 1999 pour leur passion et leur engagement.

Parke Davis
Striving To Make Miracles Happen A Little Sooner

Miracles can happen. But behind every miracle is hard work and determination. The determination to make our lives a little better, the hard work necessary to get closer to a cure. It doesn’t happen overnight; it often takes years of dedicated research. But when that research culminates in a breakthrough or a new pharmaceutical, miracles become possible.

Committed to hard work, determination and caring. The qualities that can make miracles happen.

Parke-Davis
Scarborough, Ontario - M1L 2N3

"We believe our first responsibility is to the doctors, nurses and patients, to mothers and fathers and all others who use our products and services."

- From the first tenet of the Johnson & Johnson Credo

Johnson & Johnson
MEDICAL PRODUCTS
A1: A brief list of causes for polyuria is shown below.

Major polyuric syndromes (2)

I. Primary disorders of water intake or output
 A. Excessive water intake
 Psychogenic polydipsia
 Drug-induced polydipsia (Thioridazine, Chlorpromazine, Anticholinergics)
 B. Inadequate tubular reabsorption of filtered water
 Vasopressin (ADH) deficiency
 a. Neurogenic DI
 b. Drug-induced inhibition of ADH release, ex) Narcotic antagonists
 Renal tubular unresponsiveness to ADH
 a. Nephrogenic DI (congenital and familial)
 b. Nephrogenic DI (acquired)

(1) Chronic renal disease, obstructive uropathy, unilateral renal
 arterial stenosis, post renal transplantation, chronic pyelonephritis

(2) Hypokalemia

(3) Chronic hypercalcemia

(4) Drug-induced: lithium, methoxyflurane anesthesia, demeclocycline

(5) Various systemic disorders: multiple myeloma, amyloidosis

II. Primary disorders of renal absorption of solutes (osmotic diuresis)
 A. Glucose: diabetes mellitus
 B. Salts, especially sodium chloride
 Various chronic renal diseases, especially chronic pyelonephritis
 After various diuretics, including mannitol

A2: The causes for polyuria can often be elicited by a thorough history including recent medications and procedures. Routine blood work and a urine sample are helpful to exclude diabetes mellitus and other electrolyte abnormalities.

If the etiology remains uncertain, a number of specialized tests can be used to differentiate between excessive water intake, neurogenic DI, and nephrogenic DI. In these tests, the plasma osmolality is purposely elevated by either fluid deprivation or hypertonic saline infusion. The key to correct interpretation of these tests lies in the association between urine and serum osmolality. Urine osmolality values that remain inappropriately low as the serum osmolality rises suggest DI. A vasopressin challenge, whereby a subject is given intravenous vasopressin, can differentiate neurogenic DI from nephrogenic DI. Urine osmolality increases markedly in the former, but does not rise in the latter. These tests must be done under carefully monitored conditions to ensure those patients with psychogenic polydipsia do not ingest water, and those with DI do not become critically volume depleted.

If a clinical and biochemical diagnosis of neurogenic DI is made and the etiology cannot be determined from the history and physical examination, radiologic investigations (by either CT or MRI) can be performed to rule out a hypothalamic tumor (1).
Q3: An MRI was done on this patient and a midline sagittal T1-weighted image is shown below (Fig. 1). What is the abnormality? For comparison a normal sagittal T1-weighted image is shown in Fig. 2.

Figure 1: Midline Sagittal T1-weighted MRI
Figure 2: MRI of Normal Individual
A3: Found in the posterior pituitary stalk, the storage site for vasopressin appears as a hyperintense area on T1-weighted images (3). The size of the hyperintense area, or “bright spot”, appears to be related to the functional state of the neurohypophysis, being absent in patients with clinical symptoms of neurogenic DI (3). However, since the “bright spot” may not be seen in 10 to 20 percent of normal patients, failure to visualize it on routine cranial MR images should not be viewed as evidence of neurohypophysial disease (4). Failure to visualize is thought to be due to the thickness of the cuts and volume of averaging of signal from surrounding fluid (3).

The absence of signal in the patient’s posterior pituitary is the only abnormality. No neoplastic, vascular, or postsurgical changes are seen. By exclusion, idiopathic DI is the diagnosis.

Diagnosis: Idiopathic Neurogenic Diabetes Insipidus

Neurogenic DI frequently starts in childhood or early adult life and is more common in males than females (2). The major causes are as follows:

Idiopathic DI accounts for approximately one-quarter of cases of DI (5). This usually starts in childhood and is seldom associated with anterior pituitary dysfunction. This diagnosis is made by exclusion of all other causes.

Neoplastic lesions of the hypothalamus or pituitary, including craniopharyngiomas, germinomas, and metastatic tumors.

Pituitary or hypothalamic surgery which usually develops within one week following surgery and may become chronic.

Severe head injury is usually associated with fractures of the skull.

Vascular lesions may rarely cause DI. Causes include: shock, Sheehan’s syndrome, and aneurysms.

Familial/Congenital DI is a rare hereditary form that is transmitted as an autosomal dominant trait (1).

In neurogenic DI, the posterior pituitary fails to secrete adequate amounts of vasopressin, or antidiuretic hormone (ADH), in response to osmotic stimuli. This reduction in ADH results in a decrease in urine osmolality and a reciprocal rise in the rate of urine flow. However, only 10-20% of the neurohypophysial is required to maintain normal function (6). Symptoms of excessive thirst and polyuria are compensatory measures when there is less than this.

Severe DI occurs when ADH secretory capacity declines to the point where an abnormally intense stimulus fails to elicit adequate ADH secretion for urinary concentration (6). If severe dehydration ensues, patients may manifest weakness, fever, psychic disturbances, hypotension, tachycardia, prostration, and death (2). Any patient with DI who is excessively fluid restricted may develop hypertonic encephalopathy when the serum osmolality exceeds 350 mOsm per kg (1). In an acute hyperosmolar state, the central nervous system experiences rapid shifts of water giving mental status changes and neurologic symptoms, in addition to marked dehydration (1).

Intranasal or oral desmopressin acetate (DDAVP), a synthetic analog of ADH, is typically the drug of choice in the treatment of patients with neurogenic DI (1,2). The severity of the disease determines the frequency of administration of DDAVP. Adequacy of replacement is monitored by regular measurement of serum osmolality and sodium. Patients with some residual releasable ADH may respond to treatment with several nonhormonal agents, including: chlorpropamide, clofibrate, and carbamazepine (1,2). These agents work by stimulating release of ADH. Patients with milder forms of neurogenic DI may merely require adequate hydration.

REFERENCES

Like today’s graduates, we’re on the threshold of great achievements

We’re Pfizer, a global company dedicated to discovering medicines to help people lead longer, healthier, and more productive lives. We’ve been in the discovery business since in 1849.

During the Second World War, our scientists were the first to develop a way to mass-produce the world’s first wonder drug, penicillin. Since then, Pfizer medicines have contributed significantly to the revolution in healthcare of our modern age.

Our work continues. Today, on the threshold of a new millennium, the commitment to research of our 6,000 scientists around the world holds real hope of unlocking the mysteries of Alzheimer’s disease, arthritis, cancer, and other illnesses. Pfizer is setting the pace with the worldwide launch of waves of innovative medicines while sales of our young, patent-protected products continue to grow.

And, perhaps, some of today’s graduates will help us find the way.
NOW AVAILABLE
ON MOST PROVINCIAL FORMULARIES*

TARGETED. POWERFUL. EFFECTIVE.

STRIKE DOWN LDL-C \(^{12}\) AND TG \(^{23}\) AT ULTRA-LOW DOSES

"BAYCOL," CERIVASTATIN SODIUM TABLETS, IS A HMG-CoA REDUCTASE INHIBITOR. BAYCOL IS INDICATED AS AN ADJUNCT TO DIET, AT LEAST EQUIVALENT TO THE AMERICAN HEART ASSOCIATION (AHA) STEP 1 DIET, FOR THE REDUCTION OF ELEVATED TOTAL C AND LDL-C LEVELS IN PATIENTS WITH PRIMARY HYPERCHOLESTEROLEMIA (TYPES IIa AND IIb) WHEN THE RESPONSE TO DIETARY RESTRICTION OF SATURATED FAT AND CHOLESTEROL, HYPERTRIGLYCERIDEMIA, WHEN THE HYPERCHOLESTEROLEMIA IS THE ABNORMALITY OF MOST CONCERN. BAYCOL IS INDICATED FOR THE REDUCTION OF ELEVATED CHOLESTEROL LEVELS IN PATIENTS WITH COMBINED HYPERCHOLESTEROLEMIA AND HYPERTRIGLYCERIDEMIA, WHEN THE HYPERTRIGLYCERIDEMIA IS THE ABNORMALITY OF MOST CONCERN. BAYCOL IS NOT INDICATED FOR THE TREATMENT OF HYPERTRIGLYCERIDEMIA ALONE. BAYCOL IS NOT INDICATED FOR THE TREATMENT OF HYPERTRIGLYCERIDEMIA IN PATIENTS WITH A HISTORY OF PANCREATITIS. WHEN THE RESPONSE TO DIETARY RESTRICTION OF SATURATED FAT AND CHOLESTEROL, HYPERTRIGLYCERIDEMIA, WHEN THE HYPERCHOLESTEROLEMIA IS THE ABNORMALITY OF MOST CONCERN, IT IS RECOMMENDED THAT LIVER FUNCTION TESTS BE PERFORMED BEFORE THE INITIATION OF TREATMENT. AND WITHIN 12 WEEKS AFTER THE INITIATION OF THERAPY OR ELEVATION IN DOSAGE, AND PERIODICALLY THEREAFTER. IF INCREASES IN ALP OR AST SHOW EVIDENCE OF PROGRESSION, PARTICULARLY IF THEY RISE TO \(>3\) X THE UPPER LIMIT OF NORMAL AND ARE PERSISTENT, THE DOSAGE SHOULD BE REDUCED OR THE DRUG DISCONTINUED. BAYCOL IS CONTRAINDICATED DURING PREGNANCY AND IN NURSING MOTHERS. CAUTION SHOULD BE EXERCISED IN PATIENTS WITH SEVERE HYPERCHOLESTEROLEMIA. PATIENTS WHO ARE ALSO SIGNIFICANTLY RENALLY IMPAIRED, ELDERLY, OR ARE CONCOMITANTLY BEING ADMINISTERED DIGOXIN, ERYTHROMYCIN OR OTHER CYTOCHROME P450 INHIBITORS. PLEASE SEE PRESCRIBING INFORMATION FOR DETAILED SAFETY PROFILE AND IMPORTANT INFORMATION ON POTENTIAL DRUG INTERACTIONS. PRODUCT MONOGRAPH AVAILABLE ON REQUEST.

*LISTING PENDING IN P.E.I.