Frey’s Syndrome: A Case of Aberrant Nerve Regeneration

Jason G. Williams¹, B.Sc., MD ’00, and Mark E. P. Prince², MD, FRCSC
¹ Dalhousie University Faculty of Medicine, Halifax, Nova Scotia
² Department of Otolaryngology-Head and Neck Surgery, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia

Frey’s syndrome represents a fascinating example of how nerve regeneration can go awry. The syndrome is characterized by profuse facial sweating and flushing that occurs when salivation is stimulated. It can develop following a variety of insults, but is most commonly encountered as a complication of parotidectomy. Consequently, it is mainly otolaryngologists who see and treat this disorder; however, it is important for other clinicians to recognize what these unusual symptoms represent. Diagnosis may be based either on clinical presentation or through objective testing methods. Potential negative social and psychological implications of this condition can be significant, and treatment, ranging from topical agents, to local injections of botulinum toxin (Botox), to surgical intervention should be offered to patients. In this article, we present a clinical case and review the etiology of Frey’s syndrome, its diagnosis and treatment.

INTRODUCTION

Profuse sweating and flushing over the preauricular and parotid regions of the face during mastication constitutes the symptom complex known as Frey’s syndrome (1). Also referred to as auriculotemporal syndrome or gustatory sweating, it is most commonly encountered in post-parotidectomy patients. Its incidence is not known for certain, but it is estimated that approximately 50% of post-parotidectomy patients will report symptoms, while over 90% will test positive for gustatory sweating using objective tests. Symptoms usually become apparent within several months of surgery (1,2).

Dufhenix, a French surgeon, first described this entity in 1757 after observing gustatory sweating following the drainage of a parotid abscess (3). The syndrome was named for the Polish neurologist Lucja Frey. In 1923, Frey described the occurrence of gustatory sweating in a patient who had sustained a gunshot wound to the parotid region (4,5).

The pathophysiology of Frey’s syndrome is believed to have its origins intraoperatively, when postganglionic parasympathetic cholinergic secretomotor fibers, which normally innervate the parotid gland, are severed during parotidectomy (1). The severed fibers then undergo abnormal regeneration of the cut ends of post-ganglionic cholinergic sympathetics to the sweat glands of the overlying skin (1,6). Because of these aberrant neural connections, when salivation is stimulated, local sweat glands are inadvertently activated and the patient’s cheek becomes flushed and wet.

CASE REPORT

A 68-year-old man presented with a left cheek mass that had been present for several years and was growing slowly. He had no other symptoms, had not noticed any pain or facial weakness, and denied any fluctuation in size. Examination revealed a well-circumscribed 3 cm mass in the tail of the left parotid gland. His facial nerve was intact and the remainder of the exam was normal. Fine needle aspiration revealed some atypical cells, but was not diagnostic of a specific pathology. A left superficial parotidectomy was performed preserving the facial nerve. Final pathology identified a Warthin’s tumour. His post-operative course was uncomplicated. Approximately 5 months after his surgery he began to note that his left cheek felt sweaty and flushed during meals. He returned to clinic and was diagnosed with Frey’s syndrome based on history. Treatment with 20% aluminum chloride topical antiperspirant improved his symptoms.
DISCUSSION

The majority of cases of Frey’s syndrome occur in post-parotidectomy patients. It has also been observed in other situations. Historically, it can be noted that Frey’s original description of gustatory sweating was in a patient who had received trauma to the parotid region (4,5). Some incidental reports in recent literature include a case report by Mellor describing Frey’s syndrome following the fracture of the mandibular condyle (7), and a report by Beale discussing the development of Frey’s syndrome after chemotherapy for testicular teratoma (8).

Anatomy and Pathophysiology

Appreciation of the normal innervation of the parotid gland region is critical to understanding the significance of the aberrant neuronal regeneration associated with Frey’s syndrome. The ninth cranial nerve (glossopharyngeal) is the source of secretomotor stimulation to the parotid gland (Figure 1). These fibers originate in the brainstem within the inferior salivary nucleus and exit the skull through the foramen ovale, near the mandibular branch of the trigeminal nerve. The glossopharyngeal nerve descends between the jugular vein and the carotid artery, receiving sympathetic fibers from the carotid plexus. It then loops forward, giving off the tympanic nerve which enters the middle ear cavity. These preganglionic parasympathetic fibers within the lesser superficial petrosal nerve synapse with cell bodies of second order neurons that comprise the otic ganglion. From the otic ganglion, postganglionic fibers travel with the auriculotemporal branch of the mandibular branch of the trigeminal nerve. In the parotid region the cholinergic secretomotor fibers leave the auriculotemporal nerve and diffusely innervate the parotid gland (1,10). Sympathetic innervation originates at the superior cervical ganglion of the sympathetic chain, where fibers leave

Figure 1: Autonomic nerve supply to the parotid region

Depiction of the autonomic nerve supply to the parotid region. Parasympathetic innervation is via the lesser superficial petrosal nerve and consists of fibers from the glossopharyngeal nerve. Sympathetic innervation is from the superior cervical ganglion of the sympathetic chain.
Table 1: Treatment options for Frey's Syndrome

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Agent/Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topical Antiperspirants (1,6)</td>
<td>20% Aluminum Chloride in alcohol</td>
</tr>
<tr>
<td></td>
<td>Scopolamine cream</td>
</tr>
<tr>
<td></td>
<td>Glycopyrrolate lotion</td>
</tr>
<tr>
<td>Local Injections (13,17,18)</td>
<td>Botulinum toxin type A (BOTOX) injections</td>
</tr>
<tr>
<td>Surgical Intervention (1,6,11)</td>
<td>Tympanic neurectomy</td>
</tr>
<tr>
<td></td>
<td>Fascia Lata Graft</td>
</tr>
<tr>
<td></td>
<td>Rotation of SCM muscle flap</td>
</tr>
<tr>
<td>Prophylactic Intra-operative (1,6,4)</td>
<td>Preserve auriculotemporal nerve</td>
</tr>
<tr>
<td></td>
<td>Raise thick skin flap</td>
</tr>
<tr>
<td></td>
<td>Fascia lata graft</td>
</tr>
<tr>
<td></td>
<td>Superficial musculopaponeurotic system (SMAS) interposition</td>
</tr>
</tbody>
</table>

to travel along with the external carotid artery to the parotid gland and skin. The sympathetic fibers that innervate cutaneous capillaries and sweat glands also use the neurotransmitter acetylcholine (10).

The most widely accepted mechanism of Frey’s syndrome is aberrant neuronal regeneration (1,2,5,6,11,12). During parotidectomy the postganglionic parasympathetic nerves supplying the parotid gland are sectioned. Also interrupted are the sympathetic fibers that supply local sweat glands (10,13). Following the surgery, it is believed that the severed parasympathetic fibers regenerate to connect with severed distal sympathetic nerve fibers that innervate subcutaneous sweat glands and cutaneous blood vessels. When the inferior salivary nucleus is stimulated, the output previously destined for the salivary gland now stimulates sweat glands in the distribution area of the auriculotemporal nerve (1,13). This cross-regeneration between parasympathetic and sympathetic nerve fibers is only possible because both use acetylcholine as a neurotransmitter in this area.

The diagnosis of Frey’s syndrome can often be made clinically, based on reported symptoms. The most common objective test for Frey’s syndrome is Minor’s starch/iodine test. The suspected area of the patient’s face is painted with an iodine solution, then allowed to dry. The area is dusted with starch powder, and the patient is given aialogogue such as a lemon wedge. If gustatory sweating occurs, dark blue-black spots will appear as the sweat dissolves the starch powder and it reacts with iodine (1,15). Minor’s test is considered to be very accurate, and is capable of identifying Frey’s syndrome in asymptomatic patients. Eisele describes a method using facial tissue. Patients are given aialogogues, then one ply of a two-ply facial tissue is placed against the suspected area of the face. Wet areas on the tissue will identify affected areas of skin and unaffected areas will remain dry (15). Medical thermography was used by Isogai to successfully diagnose Frey’s syndrome. Infrared thermography is performed before and after administration of a aialogogue. If Frey’s syndrome is present, a cold spot will appear over the operative site while the opposite side of the face will remain at normal body temperature (16).

The decision to treat Frey’s syndrome is based on the level of distress the symptoms cause the patient (1,5). Frequently patients with mild symptoms will opt for no treatment; however, if treatment is desired, then medical therapy will normally provide acceptable relief of sweating in most cases. A variety of topical antiperspirants have been used, including application of 3% scopolamine hydrobromide cream, 20% aluminum chloride in anhydrous ethyl alcohol, and roll-on glycopyrrolate lotion (1,6).

Recently, local intra-dermal injections with Botulinum Toxin Type A (Botox), which blocks the release of acetylcholine at cholinergic synapses, has been shown to be effective for treatment of moderate to severe Frey’s syndrome. Laskawi et al. suggest that Botox injections should be the therapy of choice for severe Frey’s syndrome (17,18). Despite eventual recurrence in many patients, the minimally invasive nature of this procedure and the long-term, symptom-free period make this treatment an attractive option. Laccourre et al. confirmed Laskawi’s results, demonstrating relief of facial sweating within 2 days of injection and no recurrence during the 7-month follow-up period. The only side effect of note was a slight weakness of the upper lip in 2 patients. These investigators concluded that Botox injection is a valuable treatment option for patients who have Frey’s syndrome following conservative parotidectomy (13). A potential serious complication of this therapy is transient facial nerve paralysis resulting from diffusion of toxin from the dermis to the facial nerve. While Laccourre et al. reported only mild facial nerve palsy that completely resolved within 3 months, it raises the important point that this intervention is not entirely benign. Cost of Botox therapy can be many times that of more conservative treatment, and cost-effectiveness will have to be demonstrated before it gains widespread favour.
If symptoms are severe and medical therapy is either ineffective or has unacceptable side effects, surgery may be considered. Tympanic neurectomy has been successful (1,5,11,14). The procedure involves disrupting the parasympathetic nerve fibers as they travel through the middle ear space. In 1962, Golding-Wood reported satisfactory resolution of Frey’s syndrome in patients undergoing this procedure (11). Other surgical procedures have been proposed, including subdermal insertion of fascia lata grafts, and the rotation of sternocleidomastoid muscle flaps into the parotid bed (1,6,14). These techniques are based on the premise that introduction of a barrier between the sweat glands and the regenerating nerve fibers will prevent inappropriate connections from occurring. Successful resolution of Frey’s syndrome using such procedures has been reported (6,14). Fascia lata grafts, rotation of muscle flaps, and reconstruction of the parotid bed with superficial musculaponeurotic system (SMAS) interposition have been effective, and may be used prophylactically during the original surgery. Variation of surgical technique that preserves a thick skin flap and the auriculotemporal nerve has been reported to decrease the incidence of Frey’s syndrome, but these are not practical in all cases (6,14).

CONCLUSION

Frey’s syndrome is an interesting illustration of how misdirected nerve regeneration can manifest clinically. Frey’s syndrome has the potential to cause great social distress for the patient, and the potential exists for negative psychological consequences. For this reason, it is important for not only otolaryngologists, but also general practitioners to be aware of this disorder and to be able to counsel patients on available treatments. Recent advances in treatment involving the use of Botulinum toxin injections are significant in that this can provide effective, minimally invasive, relatively long-lasting relief to sufferers of Frey’s syndrome. Further study of Botox injections will be required to examine potential adverse effects such as facial nerve paralysis, long-term effectiveness, and cost-effectiveness before this treatment gains widespread acceptance.

ACKNOWLEDGEMENTS

Thanks to Ellen Sears for making her artistic abilities available to us in the creation of Figure 1, and to Dr. Michele Carr for her advice on this review.

REFERENCES

AUTHOR BIOGRAPHY

Jason Williams is a third year medical student at Dalhousie. Originally from Pictou County, NS, he attended Acadia University and participated in amphibian physiology research prior to entering Medical School.
Thanks for listening.

Successful outcomes begin with careful listening. That's why, for over 25 years, more health care providers have counted on the reliability and superior acoustics of 3M™ Littmann™ stethoscopes than any other brand. To hear more, call 3M Health Care at 1-800-3M HELPS (364-3577), or visit our website at http://www.3M.com/Littmann.
Quiet Power

Excellent Tolerability To Help Enhance Patient Compliance
Efficacy – Smooth, Effective 24-Hour Blood Pressure Control

"**COZAAR**
losartan potassium

"**HYZAAR**
losartan potassium and hydrochlorothiazide

Targeted All Receptor Blockade – Excellent Tolerability

COZAAR is indicated for the treatment of essential hypertension when beta blockers and diuretics are unsuitable.
HYZAAR is indicated for the treatment of essential hypertension in patients for whom combination therapy is appropriate. **HYZAAR** is not indicated for initial therapy.
HYZAAR is not recommended for patients with severe renal impairment (creatinine clearance ≤ 30 ml/min).

*Angiotensin II
† In controlled clinical trials, dizziness was the only adverse experience, occurring in more than 1% of cases, that was reported as drug-related, and that occurred at a greater incidence in losartan-treated (2.4%) than placebo-treated (1.3%) patients and in losartan potassium-hydrochlorothiazide-treated (3.3%) than placebo-treated (1.1%) patients.

NOT RECOMMENDED DURING PREGNANCY.
BEFORE PRESCRIBING, PLEASE CONSULT THE APPROPRIATE ENCLOSED PRESCRIBING INFORMATION.

©MERCK FROSST
Merck Frosst Canada & Co., Kirkland, Quebec.

PAAB

CZR-98-CDN-42486-UA
Go beyond response.

The aim of treatment is remi.

Venlafaxine is indicated for the symptomatic relief of depressive illness. The efficacy of Effexor XR for treating major depression has been established in adult outpatients. The effectiveness of Effexor XR in long-term use (more than 8–12 weeks) has not been systematically evaluated in controlled trials. Therefore, the physician who elects to use it for extended periods should periodically re-evaluate the long-term usefulness of the drug for the individual patient.

REFER TO PRESCRIBING INFORMATION FOR MORE INFORMATION ON WARNINGS, ADVERSE EVENTS, SAFETY AND ADMINISTRATION BEFORE PRESCRIBING.
to achieve clinical
remission of depression

Think remission of depression
ONCE - DAILY
Effexor® XR
Venlafaxine HCl Extended Release Capsules
Ask your representative for proof
Oxeze® Turbuhaler® to optimal inhaled corticosteroid therapy, to take your patients farther.*

Oxeze® Turbuhaler® is the first long-acting β₂-agonist proven to reduce both mild and severe exacerbations of asthma.¹ A landmark asthma trial, The FACET® Study, has demonstrated that the addition of Oxeze® Turbuhaler® to either low or high dose "Pulmicort® (budesonide) Turbuhaler® produced remarkable reductions in the rates of severe² and mild exacerbations.³

For improved control, add Oxeze® Turbuhaler® to an optimal dose of inhaled corticosteroid.⁴

* For long-term, twice daily (morning and evening) administration in maintenance treatment of asthma patients 12 years of age and older who are receiving optimal inhaled corticosteroid treatment and experiencing regular or frequent breakthrough symptoms requiring the use of a short-acting bronchodilator. Oxeze® Turbuhaler® should not be initiated or increased in patients with significantly worsening or deteriorating asthma, or in patients whose asthma can be managed by occasional use of short-acting β₂-agonists, and should not be used to treat acute symptoms.

** Turbuhaler® and Corticosteroids Establishing Therapy 1-year double-blind, randomized, parallel study of 85 patients in 71 centers. Turbuhaler® (250 μg per inhalation) was used as needed.

³ Patients receiving Turbuhaler® and inhaled corticosteroids had a lower percentage of moderate/severe exacerbations than those receiving placebo in the FACET® Study.

⁴ For improved control, add Oxeze® Turbuhaler® to an optimal dose of inhaled corticosteroid.
CONTROL

IT'S A GREAT FEELING

When your patients have control over their asthma, anything is possible.

Today, inhaled corticosteroid therapy like Pulmicort™ is the foundation of asthma control. It is the single best way of bringing and keeping asthma under control.1 Compared to a pressurized metered-dose inhaler, Turbuhaler® is not only easier to use correctly1 and preferred by patients,2 but it deposits twice as much drug in the lungs3 — where it belongs.4 Now that’s control!

Help your patients experience that great feeling of control. Prescribe Pulmicort® Turbuhaler®.

Budesonide

"Pulmicort® Turbuhaler®

Turn to Control

1Please see full prescribing information for safety and dosage guidelines.

2Issues of long term safety especially with the use of high dose inhaled corticosteroids, must be considered. Please refer to the Canadian Asthma Consensus Conference for details on choice and assessment of asthma control. Other inhaled corticosteroids (e.g., subjects were unable to use the pressurized aerosol, whereas all subjects were able to use the breath-actuated inhaler efficiently. Pressurized aerosol (‘Metered’ [substantial]) inhaler and a multiple breath-halation powder inhaler (Inhaler [nebulizer system] Turbuhaler®) were compared in an open crossover trial in 58 subjects with no previous experience using inhalers. 36 subjects chose the breath-actuated inhaler (p<0.01) when asked which device they preferred. Ventolin® is a registered trademark of GlaxoWellcome. No comparison to Pulmicort® MDI as originally available in Canada. The pulmonary availability was 22% and 15% for Turbuhaler and MDI respectively."