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Abstract: A quantitative model was recently proposed by Peng et al (2015) to characterize the crack 

closure behavior of rocks. The model can simulate the initial nonlinearity of stress–strain curves in 

uniaxial and triaxial compressions. However, the crack propagation behavior near peak and in the post-

peak deformation stage cannot be captured by the model. This paper extends the model to simulate the 

complete stress–strain curves of rocks under uniaxial compression. A phenomenological damage model, 

which uses a logistic function to describe the damage evolution, is adopted to model the pre-peak and 

post-peak deformation stages beyond the crack closure stage. Combining the crack closure model and 

the damage model yields a new phenomenological model. A uniform continuity condition is used to 

ensure that the stress–strain curve is smooth and continuous at the junction point of the crack closure 

model and the damage model. The proposed model has four model parameters, which can be calibrated 

using laboratory test data. The uniaxial compression tests of the Carrara marble under different heating 

cycles are simulated to verify the proposed model. The simulated stress–strain curves agree well with 

the test data, from initial crack closure to near peak and post peak, suggesting that the model can be used 

for simulating the entire deformation stage of brittle rocks with different degrees of initial microcrack 

damage. 
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1 Introduction 

To mitigate and control geohazards such as slope 

failure, tunnel instability and rockburst, it is 

fundamental to study strength and deformation 

behavior of rocks. Estimation of rock strength 

and deformation parameters is necessary to 

develop constitutive models which are important 

for engineering design and analysis. An essential 

step in rock property characterization is to collect 

representative rock samples and conduct 

laboratory test on the specimens. It is found from 

numerous laboratory compression test results that 

the deformation behavior of intact rocks is mainly 

related to closure, generation and interaction of 

microcracks developed inside the rocks (Brace et 

al 1966, Bieniawski 1967, Lajtai and Lajtai 1974, 

Martin and Chandler 1994, Eberhardt et al 1998, 

Cai et al 2004, Diederichs et al 2004, Diederichs 

and Martin 2010). The progressive failure of 

brittle rocks can be divided into several stages 
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from crack closure to crack coalescence and 

several characteristic stress levels can be 

identified (see Fig. 1). 

The crack closure behavior is an important 

part in the complete rock deformation process, 

which occurs at the initial loading stage. As 

shown in Fig. 1, the stress–strain curve of this 

part is usually non-linear (concave). In particular, 

when a specimen experiences a high degree of 

thermal loading, the initial stress–strain curve will 

be strongly non-linear (Rosengren and Jaeger 

1968, Homand-Etienne and Houpert 1989, 

Mahmutoglu 1998, Du et al 2004, Keshavarz et al 

2010). Because the nonlinearity is associated with 

 

 
 

 

Fig. 1 A stress–strain diagram showing various stages of rock deformation in uniaxial compression tests (modified from 

Martin (1993) and Cai et al (2004)). (a) The regions of crack closure and growth, volumetric strain response, and the change 

of crack volumetric strain are illustrated; (b) a schematic representation showing different deformation behaviors including 

crack closure, crack initiation, crack propagation and coalescence 
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increased microcracking, the peak strength and 

the Young’s modulus of the rock will be reduced. 

As such, the crack closure behavior can be used 

to evaluate the degree of initial microcrack 

damage in the rock and attention should be paid 

to this portion of the stress–strain curve in the 

development of a constitutive model.  

Many researchers have studied the crack 

closure behavior of rocks. Corkum and Martin 

(2007) identified the nonlinear stress–strain 

behavior in the initial deformation stage of the 

Opalinus Clay and proposed a conceptual model 

that related the Young's modulus to stress. David 

et al (2012) proposed a sliding crack model for 

modeling nonlinearity and hysteresis in the 

stress–strain curves of uniaxial compression. The 

proposed model has four parameters including the 

elastic modulus of undamaged rock, the crack 

density, the characteristic aspect ratio, and the 

friction coefficient of crack surface. Recently, 

Peng et al (2015) studied the crack closure 

behavior of several rocks and proposed a 

quantitative model for characterizing the crack 

closure effect. The proposed crack closure model 

is feasible to model the initial nonlinearity of the 

stress–strain curve in uniaxial and triaxial 

compressions. However, the crack propagation 

behavior near peak and in the post-peak 

deformation stage cannot be captured by the 

model.  

Continuum Damage Mechanics (CDM) based 

models are widely used to model deformation 

behaviors of brittle rocks without resorting to a 

microscopic description of the microcrack 

initiation and propagation process, which would 

be too complex for practical engineering 

application. A damage model uses a state variable 

to represent the effect of damage on the stiffness 

and strength of a rock (Krajcinovic and Fonseka 

1981, Lemaitre 1985). The main issue in using a 

damage model lies in defining the damage 

variable and its evolution. Liu (2014) recently 

proposed a logistic model for the evolution 

function of the damage variable and established a 

phenomenological damage model. The model can 

capture well the damage evolution of rocks in the 

deformation process beyond the crack closure 

stage. In this paper, we improve and complete the 

crack closure model proposed by Peng et al 

(2015). The proposed crack closure model is 

combined with the phenomenological damage 

model (Liu 2014) to capture complete stress–

strain curves of rocks from crack closure, elastic 

deformation, crack initiation and propagation, to 

the post-peak deformation stages. A method is 

developed to integrate these two models smoothly 

and continuously, resulting in a new 

phenomenological model that can capture the 

complete stress–strain curve of rocks under 

uniaxial compression. 

 

2 Modeling of Crack Closure 

Mahmutoglu (1998) studied the influence of 

heating cycles on the mechanical properties of the 

Carrara marble. In each heating cycle, a specimen 

was heated to 600 oC and then cooled down to 

room temperature (25 oC). Uniaxial compression 

tests were carried out for specimens that went 

through 0, 1, 2, 4, 8 and 16 heating cycles. In this 

section, the crack closure model proposed by 

Peng et al (2015) is reviewed and illustrated by 

interpreting uniaxial compression test data of the 

Carrara marble. 

In the model by Peng et al (2015), the total 

axial strain at any point (see point A in Fig. 2(a)) 

in the stress–strain curve can be divided into two 

parts which are termed as the matrix axial strain 

1

mε  and the crack axial strain 
1

cε , i.e., 

1 1 1

m cε ε ε= +                               (1) 

The matrix axial strain is the axial strain of 

the rock without microcracks, and it is linearly 

related to the elastic modulus of the rock by, 

1
1

m

E

σ
ε =                                     (2) 

where σ1 is the axial stress applied on the rock, 

and E is the Young’s modulus of the rock which 

can be determined from the linear portion of the 

tested stress–strain curve. 

A negative exponent function (Fig. 2(b)) is 

used in the model to represent the relationship 

between the crack axial strain and the applied 

axial stress, i.e., 

1
1 1 expc

m
V

n

σ
ε

  = − −  
  

            (3) 
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where Vm is a model parameter that presents the 

maximum closure strain of microcracks, and n is 

a model parameter with the unit of stress which 

controls the curvature of the fitted curve.  

Substituting Eqs. (2) and (3) into Eq. (1) 

yields a phenomenological model which can be 

used to simulate the crack closure behavior in the 

initial stage of the stress–strain curve. The model 

is expressed as: 

1 1
1 1 exp

m
V

E n

σ σ
ε

  = + − −  
  

           (4) 

The parameters Vm and n in the model can be 

calibrated by fitting the test data using Eq. (3). 
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Fig. 2 Test data interpretation for the Carrara marble under 

one heating cycle. (a) Determination of the crack axial 

strain from the stress–strain curve. (b) Fitting the test data 

using a negative exponent function 

Peng et al (2015) used the uniaxial 

compression test data of the Carrara marble to 

verify their proposed model and the simulated 

axial stress–axial strain curves are presented in 

Fig. 3. It is seen that when the stress magnitudes 

are not high compared with the peak strength, the 

simulated stress–strain curves agree well with the 

test data, indicating that the crack closure model 

can be used to model the crack closure behavior 

in uniaxial compression. However, the model 

given by Eq. (4) cannot simulate the stress–strain 

curve well near the peak strength. Furthermore, 

the post-peak behavior cannot be captured using 

the crack closure model. These problems are 

addressed by employing a phenomenological 

damage model which will be discussed in the 

next section. 
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Fig. 3 Comparison of the simulated stress–strain curves 

with test data for the Carrara marble (after Peng et al (2015)) 

 

3 A Phenomenological Damage Model 

3.1 Damage variable 

In a CDM model, the change in Young’s modulus 

is usually used to define damage variable D, i.e., 

*

1
E

D
E

= −                                (5) 

where E* is the apparent deformation modulus 

which represents the slope of any point in the 

stress–strain curve, and E is the Young’s modulus 

of the rock. The Young’s modulus E can be 

obtained from the linear elastic deformation 

portion of the stress–strain curve. 
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To make sure that the damage variable ranges 

from 0 to 1, a reference point is used in the 

determination of the apparent deformation 

modulus E*. The crack closure strain εcc defined 

in Fig. 4 is used as the reference point in this 

paper. As shown in Fig. 4, the reference point is 

the intercept of the extension line of the linear 

portion of the stress–strain curve with the axial 

strain axis. The apparent deformation modulus E* 

is then determined by the slope at any point in the 

stress–strain curve to the reference point. Take 

Point G in Fig. 4 for example, the apparent 

deformation modulus E* at this point is expressed 

as:  

* 1

1 cc

E
σ

ε ε
=

−
                                  (6) 

where σ1 and ε1 are respectively the axial stress 

and the axial strain of Point G in Fig. 4. One 

shortcoming of the method for determining the 

apparent deformation modulus E* is that it is not 

applicable to the crack closure deformation stage.  

 

 

Fig. 4 A diagram showing the elastic Young’s 

modulus and the apparent deformation modulus 

 

Substituting Eq. (6) into Eq. (5) yields a 

damage model, i.e., 

( ) ( )1 11
cc

D Eσ ε ε= − −                  (7) 

Determining the evolution function of the 

damage variable D is the main issue when using a 

damage model. In the following section, we 

discuss a logistic model for the evolution function 

of the damage variable. 

3.2 A logistic model for damage evolution 

Triaxial compression tests on Tennessee marble 

were carried out by Wawersik and Fairhurst 

(1970) to study the crack development in brittle 

rocks. Liu (2014) studied the Tennessee marble 

and other rocks and established a damage 

evolution function for the damage model. The test 

data of Tennessee marble in uniaxial compression 

is used in this section to illustrate the 

development of the damage evolution model. The 

apparent deformation modulus at any point 

beyond the crack closure stage in the stress–strain 

curve is determined by Eq. (6), and the variation 

of the normalized Young’s modulus with the 

axial strain can be obtained (Fig. 5).  
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Fig. 5 Variation of the normalized Young’s modulus with 

the axial strain. The damage evolution with the axial strain 

is also plotted 

 
It is seen from Fig. 5 that the relationship 

between the normalized Young’s modulus and 

the axial strain obeys a logistic function. Thus, a 

logistic model can be used to fit the relationship 

between the normalized Young’s modulus and 

the axial strain. Fig. 5 also presents the damage 

evolution with the axial strain. The fitting result 

shows that the logistic model can capture the 

damage evolution of rocks under uniaxial 

compression. 
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Based on the above analysis, the normalized 

Young’s modulus is expressed as  

1

* 1

1

E

E e
λε γ−=

+
                             (8) 

where λ and γ are fitting parameters of the 

logistic model. 

A phenomenological damage model, which 

represents the mechanical response of rocks 

under uniaxial compression, is obtained by 

substituting Eqs. (5) and (8) into Eq. (7), which 

yields: 

( )
1

1

1
1

cc
E

e
λε γ

ε ε
σ −

−
=

+
                           (9) 

The above model is used to reproduce the 

uniaxial compression test result of the Tennessee 

marble (Fig. 6). It is seen that the simulated 

stress–strain curve agrees well with the test data, 

indicating that logistic-model-based 

phenomenological damage model can capture the 

uniaxial compression behavior of rocks. However, 

as mentioned above, the determination of the 

apparent deformation modulus E* is only 

applicable to test data beyond the crack closure 

stage. In other words, the crack closure behavior 

cannot be captured using the phenomenological 

damage model. As seen in Fig. 6, the crack 

closure deformation stage in the initial stress–

strain curve is represented as a straight line  
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Fig. 6 Comparison of the tested and simulated stress–strain 

curves of the Tennessee marble 

starting from the reference point (defined by the 

crack closure strain εcc) when the 

phenomenological damage model is used. If a 

rock, such as the thermal damaged Carrara 

marble, contains a large amount of microcracks, 

the nonlinearity in the initial deformation stage is 

strong. The phenomenological damage model 

cannot be used to simulate the complete stress–

strain relations for this type of rock. In the next 

section, we propose to combine the negative 

exponential model and the logistic-model-based 

phenomenological damage model to model the 

complete stress–strain curves of rocks from crack 

closure to peak and post-peak deformation stages.  

 

4 A New Phenomenological Model for 

Modeling Complete Stress–Strain Relations 

of Brittle Rocks 

4.1 Model description 

Based on the analysis in the above two sections, it 

is found that the crack closure model (Eq. (4)) 

can capture the crack closure behavior of rocks 

and the logistic-model-based phenomenological 

damage model (Eq. (9)) can simulate the rock 

deformation behavior beyond the crack closure 

stage. A new phenomenological model which can 

capture both the crack closure behavior during the 

initial deformation stage and the rest of the 

deformation stages of brittle rocks under uniaxial 

compression is proposed by combining these two 

models. The proposed model is expressed in the 

form of two segmented curves, i.e., 

( )1 /1
1 + 1  

n

m
V e

E

σσ
ε −= −   if  ε1 < ε0          (10a) 

( )
1

1

1
1

cc
E

e
λε γ

ε ε
σ −

−
=

+
             if  ε1 > ε0          (10b) 

where σ1 and ε1 are the axial stress and the axial 

strain during uniaxial compression of rocks, 

respectively, E is the Young’s modulus, εcc is the 

crack closure strain, Vm, n, λ and γ are model 

parameters, which can be calibrated using test 

data, and ε0 is the strain at the junction point of 

the two curves. 

To ensure that the simulated stress–strain 

curve is smooth and continuous at the junction 
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point ε0, the uniform continuity condition should 

be satisfied. A translation method is used to 

satisfy the uniform continuity condition. The 

simulated crack closure curve by the crack 

closure model is kept unchanged, and the curve 

simulated by the logistic-model-based 

phenomenological damage model (which will be 

termed as the S curve in the following discussion) 

is translated by altering the crack closure strain 

value εcc. The point where the two curves meet 

and the tangents of the two curves are equal is the 

junction point ε0. As shown in Fig. 7, the 

methodology is summarized as follows: 

a. Determine the initial crack closure strain 

εcc based on the tested stress-strain curve, and fit 

the model parameters in the proposed model. 

b. Translate the S curve and judge whether 

the crack closure curve is tangent to the S curve 

or not. The point where the two curves are 

tangent to each other is taken as the junction point 

ε0. Otherwise, translate the S curve by adding a 

small value ∆εcc to the initial crack closure strain 

εcc. 
c. Re-calculate the parameters in the damage 

model and update the simulated S curve. 

d. Repeat Steps b and c until the junction 

point ε0 is obtained. 

 

C
h
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g

e 
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e 
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Fig. 7 A flow chart showing the determination of the 

junction point from the uniform continuity condition 

The above procedure has been implemented 

into Matlab (Mathworks 2013) to automate the 

process. The uniform continuity condition can be 

fulfilled using the methodology presented above. 

The proposed phenomenological model is 

verified by simulating the uniaxial compression 

tests of the Carrara marble under different heating 

cycles in the next subsection. 

4.2 Model verification 

The proposed phenomenological model is used to 

simulate the stress–strain curves of the Carrara 

marble under different heating cycles, and the 

simulation results are presented in Fig. 8. The 

results show that the proposed model can 

represent the mechanical response of the Carrara 

marble from crack closure to peak and post-peak 

stages satisfactorily. Using the crack closure 

model alone, the initial crack closure behavior 

was well captured but near peak and post-peak 

behaviors could not be simulated. This problem 

has been solved by combining the crack closure 

model with the damage model. The parameters 

used in the model are presented in Table 1. It is 

seen that the updated crack closure strain ε'cc is 

slightly smaller than the initial value εcc, 
indicating that a translation of the S curve to the 

left had occurred. Meanwhile, the fitted 

parameter Vm is very close to the initial crack 

closure strain value εcc. The crack closure strain, 

which is determined from the laboratory test 

results, can be used to estimate parameter Vm in 

the crack closure model.  
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Fig. 8 Comparison of the simulated complete stress–strain 

curves with the test data of the Carrara marble 
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Table 1 Summary of the fitted parameters in the proposed phenomenological model 

Heating 

cycles 

UCS 

(MPa) 

E 

(GPa) 

Crack closure model Damage model 
εεεε0  (%) 

εεεεcc  
(%) 

εεεε'cc  (%) 
Vm (%) n (MPa) R2 λλλλ γγγγ R2 

0 105.8 23.7 0.104 6.58 0.98 13.70 10.53 0.94 0.302 0.104 0.103 

1 74.2 10.0 0.892 6.75 1.00 5.74 11.84 0.99 1.310 0.897 0.885 

2 71.3 9.1 1.020 3.79 0.98 6.45 14.27 1.00 1.356 1.033 1.019 

4 65.9 8.6 1.201 4.48 0.98 4.71 11.52 1.00 1.599 1.222 1.194 

8 61.0 6.2 1.252 5.12 0.98 5.26 14.38 0.99 1.791 1.260 1.248 

16 49.3 3.8 1.682 3.23 0.99 6.52 22.58 0.98 2.420 1.708 1.681 
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Fig. 9 Damage evolution with the axial strain under 

different heating cycles 
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Fig. 10 Relationship between the fitting parameters and the 

crack closure strain 

 

Figure 9 shows the evolution of the damage 

variable D (Eq. (5)) with the axial strain for the 

Carrara marble under different heating cycles. 

The damage evolutions basically follow a similar 

pattern for different heating cycles. A rock can be 

changed from a non-damage state to a damage 

state by thermal heating. More microcracks were 

introduced into the specimens with increasing 

heating cycles, leading to more axial strain. 

The four fitting parameters in the proposed 

phenomenological model are correlated to the 

crack closure strain and the result is presented in 

Fig. 10. Both parameters Vm and γ show an 

increasing trend with the increase of the initial 

damage and the trend line for parameter Vm is 

almost linear. Parameters n and λ decrease with 

increasing initial damage. 

 

5 Conclusions 

The crack closure behavior is an important part of 

the complete rock deformation process. A crack 

closure model proposed by Peng et al (2015) can 

simulate the initial nonlinearity of the stress–

strain curve in uniaxial and triaxial compressions. 

However, the crack propagation behavior near 

peak and in the post-peak deformation stages 

cannot be captured by the crack closure model 

alone. In order to simulate the complete stress–

strain behavior of rocks under uniaxial 

compression, the crack closure model is extended 

by combining it with a phenomenological damage 
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model. In the damage model, the degradation of 

the Young’s modulus is defined as the damage 

variable, and a logistic model is used to 

characterize the damage evolution. A method is 

developed to satisfy the uniform continuity 

condition so as to ensure that the crack closure 

model and the damage model connect smoothly at 

the junction point. Because the microcrack-

induced initial damage can be reflected in the 

crack closure stage, the new phenomenological 

model can be used to simulate the mechanical 

behavior of rocks with different initial damage 

levels. By simulating the uniaxial compression 

test results of the Carrara marble under different 

heating cycles, it is found that the new 

phenomenological model can capture the 

complete stress–strain behavior of brittle rocks 

from the crack closure to peak and post-peak 

deformation stages. 
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