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Abstract: A Kalman filter estimation of the state of a system is merely a random vector that has a normal, also called Gaussian, 
distribution. Elementary statistics teaches any Gaussian distribution is completely and uniquely characterized by its mean and 
covariance (variance if univariate). Such characterization is required for statistical inference problems on a Gaussian random 
vector. This mean and composite covariance of a Kalman filter estimate of a system state will be derived here. The derived 
covariance is in recursive form. One must not confuse it with the “error covariance” output of a Kalman filter. Potential 
applications, including geological ones, of the derivation are described and illustrated with a simple example. 
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1. Introduction 
 
Analysts often use the Kalman filter (KF) to estimate the 
state of a system from measurements of observations of this 
state that are perturbed by Gaussian (normally distributed) 
white process noise. Since the estimated state of a system, 
based on measurements, is, itself, a random variable or 
vector, as well as a stochastic process over time, analysts 
may wish to also characterize the probabilistic distribution 
(that is, the statistics) of the estimate, itself, in order to 
understand its random behavior. Since noise is assumed to 
be Gaussian (normally distributed), the estimated state, a 
linear function of Gaussian noises, is also Gaussian (Hogg 
and Craig 1978). Being Gaussian, it has the convenient 
mathematical property that its statistics is completely 
determined by the mean vector and covariance matrix 
(variance if univariate) (Hogg and Craig 1978). We derive 
here the covariance and mean of the KF state estimate, as a 
Gaussian distributed random vector/variable. A recursive 
formula for the covariance will be derived as well as the 
formula for the mean.  

Given initial conditions, a formula for a type of 
covariance is already in the KF. It is recursive and represents 
the estimation error covariance, that is, the covariance of the 
difference between the true state of the system and the KF 
estimated state (Meditch 1969). It is a priori (does not 
depend on measurement data). This covariance is 

𝑃(𝑘|𝑘) ≡ 𝑐𝑜𝑣 ቀ𝑋෠(𝑘|𝑘) − 𝑋(𝑘)ቁ,  

where 𝑋෠(𝑘|𝑘) is the KF state estimate at time 𝑘 = 0,1,2, ⋯, 
given 𝑘 measurements, initializing at  

𝑋෠(0|0) = 𝐸[𝑋(0)] ≡ 𝑥଴.   

Note 𝐸  is the symbol for expected value. The  𝑋(𝑘) 
represents the actual state at time 𝑘 . Knowledge of this 
covariance is used to determine the statistical behavior of 
estimation error. Thus, it gives information on the KF state 
estimation’s reliability.  

Although the error covariance of the KF measures the 
random variation of the state estimator from the actual 
random state, it does not give the covariance around the 
deterministic mean function of the estimator. The mean can 
be interpreted to be the deterministic state model or the 
prediction model prior to observations, as we will show later 
that the mean of the estimate equals the mean of the state. 
This “composite” covariance, not given in the KF, of the 
estimator, itself, along with its mean, according to statistical 
theory, are required to determine the true statistics of the 
estimator, being Gaussian. We shall derive this composite 
covariance here, as it is not found in textbooks. We also 
derive here the formula for the mean vector. 

Notice this new covariance is completely different from 
the KF output error covariance 𝑃(𝑘|𝑘) . Recalling error 
covariance is  

 𝑃(𝑘|𝑘) ≡ 𝑐𝑜𝑣 ቀ𝑋෠(𝑘|𝑘) − 𝑋(𝑘)ቁ  

by the definition of covariance, this must be 

 𝐸 ൤൫𝑋෠(𝑘|𝑘) − 𝑋(𝑘) − 0൯ ቀ൫𝑋෠(𝑘|𝑘) − 𝑋(𝑘) − 0൯ቁ
்

൨  

where the superscript T represents matrix inverse and with 
the 0’s unnecessarily inserted to show the mean of the 
estimate error, 𝑋෠(𝑘|𝑘) − 𝑋(𝑘), is hypothesize as 0. Yet our 
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new KF estimate covariance we will derive here 

is 𝑐𝑜𝑣 ቀ𝑋෠(𝑘|𝑘)ቁ, which, in contrast, must be 

  𝐸 ቂ൫𝑋෠(𝑘|𝑘) − 𝐸ൣ𝑋෠(𝑘|𝑘)൧൯൫𝑋෠(𝑘|𝑘) − 𝐸ൣ𝑋෠(𝑘|𝑘)൧൯
்

ቃ   

Notice how this very much differs from 𝑃(𝑘|𝑘). These 
formulas will be restated later when they are used in 
explanations. We also show later that 

𝐸ൣ𝑋෠(𝑘|𝑘)൧ = 𝐸[𝑋(𝑘)],  
 

that is, the estimate is unbiased. 
 

2. Proposed Applications 
 
Along with the application to mathematical statistics that 
knowing the exact distribution of a KF estimate gives 
mathematical completeness from a statistical perspective, 
we now describe how this knowledge is useful in the 
analysis of estimations of physical systems. Such systems 
surely include geology or geological engineering analysis 
such as performing estimations on seismic measurement 
data or observation data from radioactivity coming from the 
ground (or elsewhere). We briefly describe below.  

One useful physical application follows, as the KF is an 
“unbiased” state estimator, which we show later. Thus, a KF 
estimation mean equals the actual state mean, which can 
also be interpreted, given the initial state, as the predicted 
state before measurement. A covariance shows how much a 
random variable or process varies from its mean. Since, 
being unbiased, the mean of the KF is the same as the state 
mean, this composite covariance is useful in determining 
how closely a KF estimation follows the state mean, that is, 
the predicted state. It shows how much unpredictability due 
to randomness is inherit to the chosen application of the KF 
for each given time. If the covariance matrix shows large 
variances for some components of the state vector at any 
given time, one concludes the estimated state will probably 
vary a lot from the deterministic predicted model at these 
state components. As random disturbances of the state, 
modeled by process noise, is cumulative, the deviation of 
the estimate from the prediction will, generally speaking. 
grow with time. For example, if a state is disturbed by air, 
this disturbance always exists and causes the state to veer 
off the predicted more and more with time. Our covariance 
gives user ideas of when to expect the estimate to no longer 
resemble the prediction. Some analysts may like some 
anticipations of when may estimates no longer resemble 
predictions. As our covariance as well as the error 
covariance do not use actual measurement data, this analysis 
can be done a priori giving ideas of what to expect before 
actual observations. This extra piece of information 
previously unavailable may prove useful to some analysts. 

In state estimation, including geological ones, this 
covariance can be used whenever Kalman filters are used. 
Kalman filters are useful in situations when the user has a 
state model and a measuring device.  Given the state model 
and the measurement, a Kalman filter estimates the state. 
Our composite covariance, as mentioned, gives a priori 
ideas of how much and when actual estimates will deviate 

from predictions (which actually is also the state model 
without the random process noise) up to a point where it no 
longer resembles the prediction.  

An article by Kitagawa, Takanani, and Matsumoto in 
the book Time Series Analysis and Applications to 
Geophysical Systems (Brillinger et al. 2004) describes how 
seismological data can use state space models and 
measurement devices such as seismometers. The article 
stated seismic signals are contaminated by process noise 
from natural (and human) background disturbances such as 
the air and numerous other sources. With the existence of 
state models and measuring devices, the KF is useful to 
estimate the state. According to the article, the states to be 
estimated by Kalman filters may actually be time varying 
parameters in a time series model. Parameters of states, to 
be analyzed as states themselves, for Kalman filters may 
include seismic signals or “coseismic” effects from 
groundwater. This must be extracted in order to observe 
signals from earthquakes that the seismic device is 
measuring. Given KFs are utilized here, we can use our 
composite covariance to conjecture how much estimates 
will deviate from the predicted model and when will 
deviations grow so large it no longer resembles predictions. 

We will give a simple numerical example illustrating 
our proposed application immediately following the 
derivations of our estimation covariance and mean. This 
will help clarify the above description.  

One also may wish to know whether estimates of 
components of a state vector statistically affect each other. 
For example, if a component of the state estimate is 
geological ground vibrations in several directions, one may 
like to know whether an increase in one direction greatly 
affects that of another direction. Also, the measurement of 
displacements from rock deformation or landslides can have 
several locations as well as perhaps directions forming a 
multivariate random vector. The analyst may not be 
concerned only whether a component of the state, itself, 
affects that of another but may also wish to know whether 
estimated components are affected by the estimation of 
other components of the estimated state vector. We use 
correlations to analyze this. The covariance matrix of any 
random process gives cross covariance between any 2 
component elements. Correlations between these elements 
can be computed by dividing the product of the square roots 
of the variances of the 2 elements (standard deviations) 
(Meditch 1969). Since the composite covariance that we 
will derive is the actual covariance of the KF, it can show 
the amount of correlation between estimated state 
components and therefore how much one estimated 
component affects estimation of another statistically. As 
before, being a priori, this is the conjectured correlation, 
which can be obtained before the actual observation. 

Being a priori, insights of how closely estimates follow 
predictions and how estimates of components are affected 
by other components give knowledge that can be archived 
as reference on similar future runs. One can thus have better 
ideas of what to expect in similar scenes. 

If we are given actual observations and measurements, 
another use of composite covariance occurs if observations 
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in the field or lab experiment can be replicated. In that case 
this composite covariance can be used to perform a test of 
hypothesis on the correctness of the state mean model, that 
is, how correct is the predicted state. Again, this is true since 
for Kalman filters, being unbiased, its estimate mean equals 
that of the predicted state. Since Gaussian processes are 
fully determined by the covariance and mean, a statistical 
test of hypothesis on the mean can be constructed. We must 
replicate and measure an experimental run a given m times 
for a chosen time k. Then one takes the vector sample mean 
of the estimate at time k. The state mean, if the model is 
correct, is as we will derive. We do a multivariate test of 
hypothesis to test the correctness of this mean (prediction) 
by using the probability distribution of the sample mean 
computed from the distribution of the KF estimate, whose 
distribution is determined by our composite covariance. We 
construct a multivariate rejection (“critical”) region for the 
hypothesized mean (prediction) model at any desired 
confidence level using the n dimensional joint probability 
density of the sample mean, rejecting the assumed 
prediction at time k if it falls in this region. We can also test 
the hypotheses on any component of the mean vector by 
using the element’s variance within the covariance matrix 
and the mean to be tested of that element, constructing an 
univariate sample mean critical region. See (Hogg and Craig 
1978) on a univariate test of hypothesis, for which the n 
dimensional version in this article generalizes. In geology, 
for example, one may have some samples taken from the 
earth for analysis. One may perform some tests such as 
testing for how much radioactive minerals it contains or 
other attributes that can be modeled a priori. Then 
measurements can be taken and estimates computed from 
Kalman filters. Perhaps this experiment can be replicated 
with the lab sample multiple times. Then such a test of 
hypothesis can be performed to accept or reject the predicted 
model. 

In our presentation and derivations, we use 
mathematical symbols that in large part followed the 
textbook by (Meditch 1969), as these symbols very clearly 
described the Kalman filter (KF). However, in contrast to 
the book, we do not assume the deterministic state model to 
be 0 in the absence of process noise. 

 
3. Elementary Well-Known Results 
 
In order to prove the covariance formula, some elementary 
well-known results from probability and KF are required. 
These are presented here. 
 
Theorem 1: Given random vector X, Y, U, V, and 
matrices 𝐴, 𝐵, 𝐶, 𝐷, 
 
𝑐𝑜𝑣[𝐴𝑋 + 𝐵𝑌, 𝐶𝑈 + 𝐷𝑉] = 𝐴 𝑐𝑜𝑣( 𝑋, 𝑈)𝐶் +
𝐵 𝑐𝑜𝑣(𝑌, 𝑈) 𝐶் + 𝐴 𝑐𝑜𝑣(𝑋, 𝑉) 𝐷் + 𝐵 𝑐𝑜𝑣(𝑌, 𝑉) 𝐷்    (1) 
  

Note, for all random variable R, we define  
𝑐𝑜𝑣(𝑅) ≡ 𝐸{[𝑅 − 𝐸(𝑅)][𝑅 − 𝐸(𝑅)]்} ≡ 𝑐𝑜𝑣(𝑅, 𝑅)    (2) 
 
Corollary 1: Given random vectors X, Y 

𝑐𝑜𝑣(𝐴𝑋 + 𝐵𝑌) = 𝐴 𝑐𝑜𝑣(𝑋) 𝐴் + 𝐵 𝑐𝑜𝑣(𝑌) 𝐵் +
𝐴 𝑐𝑜𝑣(𝑋, 𝑌) 𝐵் + 𝐵 𝑐𝑜𝑣( 𝑌, 𝑋)𝐴்    (3) 

 
 
Theorem 2: Given random vectors X and Y, 

𝑐𝑜𝑣(𝑋, 𝑌) = 𝑐𝑜𝑣்(𝑌, 𝑋)     (4) 

The state and measurement equations will be stated 
respectively as follows (Meditch 1969), letting𝑋(𝑗) &𝑍(𝑗) 
be state & measurement vectors respectively at time 𝑡௝.  
Let 𝑋(0) = 𝑋    (5), 𝑋 a random variable. 
 
𝑋(𝑘 + 1) = 𝛷(𝑘 + 1, 𝑘)𝑋(𝑘) + 𝛤(𝑘 + 1, 𝑘)𝑊(𝑘)    (6) 
 
𝑍(𝑘 + 1) = 𝐻(𝑘 + 1)𝑋(𝑘 + 1) + 𝑉(𝑘 + 1) (7) 

  𝛷(𝑘 + 1, 𝑘) is called the state transition matrix from 
time 𝑡௞to 𝑡௞ାଵ. Equation (6) is actually the solution of the 
differential equation model of the state at time 𝑡௞ାଵ , 
initialized at 𝑡௞, where the transition matrix in (6) is actually 
the state transition matrix of this solution. The differential 
equation is equation (8) below, which we will describe very 
soon. 𝑊  and 𝑉 represent Gaussian white process and 
measurement noises respectively, which arises from the 
original state differential equation motion. 𝐻  and 𝛤  are 
matrix functions of 𝑘. 𝛤 has 𝑛 × 𝑝 dimension, as we define 
the state X to be n dimensional for n components and 
process noise W to have p  dimensions. 𝐻 has 𝑞 × 𝑛 

dimensions, as we define the measurement 𝑍(𝐾) to have 𝑞 
dimensions. The differential equation representing the state 
is   

𝑑𝑋(𝑡) = 𝐹(𝑡)𝑋(𝑡)𝑑𝑡 + 𝐺(𝑡)𝑑𝐵(𝑡); 𝑡 ≥ 0 (8) 

where B  is Brownian motion, supposedly the integral of 
Gaussian white noise. Yet, Gaussian white noise 
mathematically does not exist, as Brownian motion is with 
probability 1 (“almost surely”) not differentiable. See 
(Mandelbrot and Van Ness 1968), which states this by way 
of processes called Fractional Brownian Motion, which 
Brownian motion is a specific case. We say non-
differentiable with probability 1 because there is a set in the 
probability space where Brownian motion is differentiable, 
but it has probability measure 0. Noting a probability space 
is a measure space where its measure is defined as its 
probability, the reader is referred to (Royden 1969) to learn 
about measure spaces and its measures. Its differential, 
𝑑𝐵(𝑡) , is merely symbolized as 𝑊(𝑡)𝑑𝑡 , such that W is 
continuous Gaussian white noise, which, as explained, is 
mathematically non-existent. This is why we prefer using 
differentials in our differential equation to avoid the 
derivative definition of Gaussian white noise,  

𝑊(𝑡) ≡
ௗ஻(௧)

ௗ௧
  (9) 

which with probability 1, cannot exist. [Wong and Hajek 
1985] discusses such differential equations as well as its 
generalization. Symbol k represent time 𝑡௞ > 0; 𝑘 = 0,1, ….  
𝐹 and 𝐺 are matrices involved in describing the differential 
equation model, and 𝛤  is the coefficient matrix of the 
discrete time noise that arises as the solution of the 
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differential equation. Note in solving the differential 
equation we assume that the process noise is constant 
between observations. So actually 

𝛤(𝑘 + 1, 𝑘) ≡ න 𝛷(𝑘 + 1, 𝑘)𝐺(𝛼)
௧ೖశభ

௧ೖ

𝑑𝛼        (10) 

from solving the differential equation with process noise 
constant between observation (Meditch 1969). (This avoids 
the non-differentiability of Brownian motion and also 
simplifies and modifies the Gaussian white process noise to 
a Gaussian process that is independent for different 𝑘 =
0,1, ⋯.). 

The KF equations for the state estimator, written in 
reference (Meditch 1969) form, which is used in our 
derivations is: 

 
Theorem 3: Kalman Filter (Meditch 1969): Given the state 
model X the KF estimator is:  
 

𝑋෠(𝑘 + 1|𝑘 + 1) = [𝐼 − 𝐾(𝑘 + 1)𝐻(𝑘 + 1)] × 
𝛷(𝑘 + 1, 𝑘)𝑋෠(𝑘|𝑘) + 𝐾(𝑘 + 1)𝑍(𝑘 + 1) (11) 

where  
𝐾(𝑘 + 1) = 𝑃(𝑘 + 1|𝑘)𝐻்(𝑘 + 1)[𝐻(𝑘 + 1) ×
𝑃(𝑘 + 1|𝑘)𝐻்(𝑘 + 1) + 𝑅(𝑘 + 1)]ିଵ   (12) 

 

𝑃(𝑘 + 1|𝑘) = 𝛷(𝑘 + 1, 𝑘)𝑃(𝑘|𝑘)𝛷்(𝑘 + 1, 𝑘) +
𝛤(𝑘 + 1, 𝑘)𝑄(𝑘)𝛤்(𝑘 + 1, 𝑘) (13) 
 

𝑃(𝑘 + 1|𝑘 + 1) =  

[𝐼 − 𝐾(𝑘 + 1)𝐻(𝑘 + 1)]𝑃(𝑘 + 1|𝑘);  

𝐼 𝑎𝑛 𝑛 × 𝑛 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥  (14) 
 
𝑋෠(0|0) = 𝐸[𝑋(0)] ≡ 𝑥଴ (15) 

is the initial condition vector and 𝑋෠(𝑘|𝑘)  represents the 
KF estimate of 𝑋(𝑘) , given observed measurements 

{𝑍(1), … , 𝑍(𝑘)} .  jZ  has a given r dimension 𝑗 =

1, … , 𝑝 for a total of p observed measurements. 

 𝑃(𝑘|𝑘) ≡ 𝑐𝑜𝑣൛ൣ𝑋෠(𝑘|𝑘) − 𝑋(𝑘)൧ൟ 

≡ 𝐸 ቄൣ𝑋෠(𝑘|𝑘) − 𝑋(𝑘) − 0൧ൣ𝑋෠(𝑘|𝑘) − 𝑋(𝑘) − 0൧
்

ቅ 

= 𝐸 ቄൣ𝑋෠(𝑘|𝑘) − 𝑋(𝑘)൧ൣ𝑋෠(𝑘|𝑘) − 𝑋(𝑘)൧
்

ቅ (16) 

is the filter error covariance given k measurements, which 
assumes initial condition 𝑃(0|0)  as a given 𝑃଴ , and k 
represents 𝑡௞ ≥ 0 . 𝐾(𝑘)  is a matrix with associated 
dimensions from the KF known as the “Kalman gain”. 
Matrix𝑃(𝑘 + 1|𝑘) is the predicted error covariance at 𝑘 + 1 
given 𝑘  measurements (Meditch 1969). 𝑄(𝑘); 𝑘 = 0,1, ⋯ 
represents process noise covariance, and 𝑅(𝑘 + 1); 𝑘 =
0,1, …  represents measurement noise covariance. The 
covariance 𝑄  definition is modified to the discrete time 
noise that is constant for all 𝑘, as explained above. In the 
identical way, the covariance 𝑅 is also now made discrete. 
 
4. Derivation of the Covariance and the Mean Forming 

the Complete Gaussian Statistics 

 
Finally, what follows is the formula, stated in the form of a 
mathematical theorem, for the composite covariance of the 
estimated state. The mathematical proof is also provided. As 
already explained, it characterizes the total variation of the 
state estimation. It is based upon the given process noise, 
measurement noise covariance, and state model. 
Advantages of this algorithm is that it is a relatively simple 
formula that can be programmed on the computer in a 
straightforward manner. It is a sequential (or recursive) 
formula and based on the model and 2 input covariance 
parameter matrices. An advantage of this methodology is 
that it is computationally very fast, requiring no 
computationally intensive, CPU time consuming. nor 
memory space intensive processes, being a set of recursive 
equations. Since the measurement data are not used, the 
accuracy of this methodology relies upon the reliability of 
the state equation model and the accuracy of the input 
processes noise and measurement noise covariance 
matrices. 

Let 𝑋෠(𝑘|𝑘)  represent the KF estimate for state 𝑋(𝑘) 
given the first k measurement data where data at k represents 
measurement at time 𝑡௞ . Then the sequential composite 
covariance algorithm is given in the next theorem.  

Recall that we define this covariance as follows: 

𝑐𝑜𝑣ൣ𝑋෠(𝑘|𝑘)൧ ≡ 

𝐸 ൜ቂ𝑋෠(𝑘|𝑘) − 𝐸 ቀ𝑋෠(𝑘|𝑘)ቁቃ ቂ𝑋෠(𝑘|𝑘) − 𝐸 ቀ𝑋෠(𝑘|𝑘)ቁቃ
்

ൠ (17) 

 
Theorem 4:  The equations for  𝑐𝑜𝑣ൣ𝑋෠(𝑘 + 1|𝑘 + 1)൧ is as 
follows: 

𝑐𝑜𝑣ൣ𝑋෠(𝑘 + 1|𝑘 + 1)൧ ≡ 

𝐸 ቄቂ𝑋෠(𝑘 + 1|𝑘 + 1) − 𝐸 ቀ𝑋෠(𝑘 + 1|𝑘 + 1)ቁቃ × 

ቂ𝑋෠(𝑘 + 1|𝑘 + 1) − 𝐸 ቀ𝑋෠(𝑘 + 1|𝑘 + 1)ቁቃ
்

ൠ 

= [𝐼 − 𝐾(𝑘 + 1)𝐻(𝑘 + 1)]𝛷(𝑘 + 1, 𝑘) 𝑐𝑜𝑣 ቀ𝑋෠(𝑘|𝑘)ቁ 

× 𝛷்(𝑘 + 1, 𝑘)[𝐼 − 𝐾(𝑘 + 1)𝐻(𝑘 + 1)]் 

+𝐾(𝑘 + 1)𝐻(𝑘 + 1) 𝑐𝑜𝑣൫𝑋(𝑘 + 1)൯ 𝐻்(𝑘 + 1) ×

𝐾்(𝑘 + 1) + 𝐾(𝑘 + 1) 𝑐𝑜𝑣൫𝑉(𝑘 + 1)൯ 𝐾்(𝑘 + 1)  
+൫𝐼 − 𝐾(𝑘 + 1)𝐻(𝑘 + 1)൯𝛷(𝑘 + 1, 𝑘)

× 𝑐𝑜𝑣ൣ𝑋෠(𝑘|𝑘), 𝑋(𝑘 + 1)൧ 𝐻்(𝑘 + 1)

× 𝐾்(𝑘 + 1) 

+𝐾(𝑘 + 1)𝐻(𝑘 + 1) 𝑐𝑜𝑣்ൣ𝑋෠(𝑘|𝑘), 𝑋(𝑘 + 1)൧ × 

𝛷்(𝑘 + 1, 𝑘)[𝐼 − 𝐾(𝑘 + 1)𝐻(𝑘 + 1)]்   (18) 

 

𝑐𝑜𝑣ൣ𝑋෠(𝑘|𝑘), 𝑋(𝑘 + 1)൧ ≡ 

𝐸 ቄቂ𝑋෠(𝑘|𝑘) − 𝐸 ቀ𝑋෠(𝑘|𝑘)ቁቃ ൣ𝑋(𝑘 + 1) − 𝐸൫𝑋(𝑘 + 1)൯൧
்

ቅ  

= [𝐼 − 𝐾(𝑘)𝐻(𝑘)]𝛷(𝑘, 𝑘 − 1) × 

𝑐𝑜𝑣ൣ𝑋෠(𝑘 − 1|𝑘 − 1), 𝑋(𝑘)൧ 𝛷்(𝑘 + 1, 𝑘) 

+𝐾(𝑘)𝐻(𝑘) 𝑐𝑜𝑣൫𝑋(𝑘)൯ 𝛷்(𝑘 + 1, 𝑘)   (19) 
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𝑐𝑜𝑣൫𝑋(𝑘 + 1)൯ ≡ 

𝐸 ቄൣ𝑋(𝑘 + 1)  − 𝐸൫𝑋(𝑘 + 1)൯൧

× ൣ𝑋(𝑘 + 1) − 𝐸൫𝑋(𝑘 + 1)൯൧
்

ቅ 

= 𝑐𝑜𝑣[𝛷(𝑘 + 1, 𝑘)𝑋(𝑘) + 𝛤(𝑘 + 1, 𝑘)𝑊(𝑘)] = 
𝛷(𝑘 + 1, 𝑘) 𝑐𝑜𝑣൫𝑋(𝑘)൯ 𝛷்(𝑘 + 1, 𝑘) + 

𝛤(𝑘 + 1, 𝑘) 𝑐𝑜𝑣൫𝑊(𝑘)൯ 𝛤்(𝑘 + 1, 𝑘)   (20) 
 
 Initialize as follows: 
a) Given 

 𝑋෠(0|0) ≡ 𝐸[𝑋(0)] = 𝑥଴,  
 𝑐𝑜𝑣ൣ𝑋෠(0|0)൧ = 𝑐𝑜𝑣(𝑥଴) (21) 
 

But this is zero since 0x  is a constant. 

b) 𝑐𝑜𝑣ൣ𝑋෠(0|0), 𝑋(1)൧ = 0 since 𝑋෠(0|0) = 𝑋଴,  
a constant  (22) 
 

c) Since 𝑐𝑜𝑣൫𝑊(𝑘)൯ = 𝑄(𝑘),  
let 𝑐𝑜𝑣൫𝑋(0)൯ = 𝑄଴  (23) 
 

d) 𝑐𝑜𝑣ൣ𝑋(1), 𝑋෠(0|0)൧ = 0 (24) 
for the same reason as in b) 

Assume that 𝑊, 𝑉  are the discrete versions derived 
from Gaussian white noises, as previously described. Also 
assume 𝑊(𝑘)  is independent of 𝑉(𝑚) , and 𝑉(𝑚) is 
independent of 𝑋(𝑝), for any integer k,m,p, and 𝑊(𝑘) is 
independent of 𝑋(𝑝) for all 𝑝 ≤ 𝑘.  

 
Proof:  

The preceding theorems and corollary are used to prove 
these results. Each of the 3 equations of this theorem are 
proven separately. The third, equation (20) is simplest and 
proven first. 

𝑐𝑜𝑣൫𝑋(𝑘 + 1)൯ = 

𝑐𝑜𝑣[𝛷(𝑘 + 1, 𝑘)𝑋(𝑘) + 𝛤(𝑘 + 1, 𝑘)𝑊(𝑘)]= 
𝛷(𝑘 + 1, 𝑘) 𝑐𝑜𝑣൫𝑋(𝑘)൯ 𝛷்(𝑘 + 1, 𝑘) + 

𝛤(𝑘 + 1, 𝑘) 𝑐𝑜𝑣൫𝑊(𝑘)൯ 𝛤்(𝑘 + 1, 𝑘)    (20) 
 
Proof:  

 By definition given as equation (6), 

𝑋(𝑘 + 1) = 𝛷(𝑘 + 1, 𝑘)𝑋(𝑘) + 𝛤(𝑘 + 1, 𝑘)𝑊(𝑘).  
Therefore,  

𝑐𝑜𝑣൫𝑋(𝑘 + 1)൯ = 𝑐𝑜𝑣[𝛷(𝑘 + 1, 𝑘)𝑋(𝑘)

+ 𝛤(𝑘 + 1, 𝑘)𝑊(𝑘)] 

= 𝛷(𝑘 + 1, 𝑘) 𝑐𝑜𝑣൫𝑋(𝑘)൯ 𝛷்(𝑘 + 1, 𝑘) 

+𝛷(𝑘 + 1, 𝑘) 𝑐𝑜𝑣[𝑋(𝑘), 𝑊(𝑘)] 𝛤்(𝑘 + 1, 𝑘) + 
𝛤(𝑘 + 1, 𝑘) 𝑐𝑜𝑣[𝑊(𝑘), 𝑋(𝑘)] 𝛷்(𝑘 + 1, 𝑘) 

+𝛤(𝑘 + 1, 𝑘) 𝑐𝑜𝑣൫𝑊(𝑘)൯ 𝛤்(𝑘 + 1. 𝑘) = 

𝛷(𝑘 + 1, 𝑘) 𝑐𝑜𝑣൫𝑋(𝑘)൯ 𝛷்(𝑘 + 1, 𝑘) + 

𝛤(𝑘 + 1, 𝑘) 𝑐𝑜𝑣൫𝑊(𝑘)൯ 𝛤்(𝑘 + 1, 𝑘)   (25) 

 

Now we will prove our first relationship, equation (18). 

1) 𝑐𝑜𝑣ൣ𝑋෠(𝑘 + 1|𝑘 + 1)൧ 
= [𝐼 − 𝐾(𝑘 + 1)𝐻(𝑘 + 1)]𝛷(𝑘 + 1, 𝑘) 

𝑐𝑜𝑣 ቀ𝑋෠(𝑘|𝑘)ቁ 𝛷்(𝑘 + 1, 𝑘)[𝐼 − 𝐾(𝑘 + 1)𝐻(𝑘 + 1)]் 

+𝐾(𝑘 + 1)𝐻(𝑘 + 1) 𝑐𝑜𝑣൫𝑋(𝑘 + 1)൯ 𝐻்(𝑘 + 1) 
× 𝐾்(𝑘 + 1) + 𝐾(𝑘 + 1) 𝑐𝑜𝑣൫𝑉(𝑘 + 1)൯ 𝐾்(𝑘 + 1) 

+൫𝐼 − 𝐾(𝑘 + 1)𝐻(𝑘 + 1)൯𝛷(𝑘 + 1, 𝑘) × 
𝑐𝑜𝑣ൣ𝑋෠(𝑘|𝑘), 𝑋(𝑘 + 1)൧ 𝐻்(𝑘 + 1)𝐾்(𝑘 + 1) 

+𝐾(𝑘 + 1)𝐻(𝑘 + 1) 𝑐𝑜𝑣்ൣ𝑋෠(𝑘|𝑘), 𝑋(𝑘 + 1)൧ × 

𝛷்(𝑘 + 1, 𝑘)[𝐼 − 𝐾(𝑘 + 1)𝐻(𝑘 + 1)]்   (18) 
 

Proof: Let 
 𝐴 = [𝐼 − 𝐾(𝑘 + 1)𝐻(𝑘 + 1)]𝛷(𝑘 + 1, 𝑘); 
𝐾 = 𝐾(𝑘 + 1); 𝐻 = 𝐻(𝑘 + 1) (26) 
 
 Then by the Kalman filter formula previously given, 

𝑐𝑜𝑣 ቀ𝑋෠(𝑘 + 1|𝑘 + 1)ቁ = 𝑐𝑜𝑣ൣ𝐴𝑋෠(𝑘|𝑘) + 𝐾𝑍(𝑘 + 1)൧ 

= 𝑐𝑜𝑣ൣ𝐴𝑋෠(𝑘|𝑘) + 𝐾൫𝐻𝑋(𝑘 + 1) + 𝑉(𝑘 + 1)൯൧  (27) 
 
 As measurement model, equation (7) implies  

𝑍(𝑘 + 1) = 𝐻𝑋(𝑘 + 1) + 𝑉(𝑘 + 1)               (28) 
 

𝑐𝑜𝑣ൣ𝐴𝑋෠(𝑘|𝑘) + 𝐾൫𝐻𝑋(𝑘 + 1) + 𝑉(𝑘 + 1)൯൧ 

= 𝐴 𝑐𝑜𝑣 ቀ𝑋෠(𝑘|𝑘)ቁ 𝐴்

+ 𝐾 𝑐𝑜𝑣[𝐻𝑋(𝑘 + 1) + 𝑉(𝑘 + 1)] 𝐾் 

+𝐴 𝑐𝑜𝑣ൣ𝑋෠(𝑘|𝑘), 𝐻𝑋(𝑘 + 1) + 𝑉(𝑘 + 1)൧ 𝐾் 
+𝐾 𝑐𝑜𝑣ൣ𝐻𝑋(𝑘 + 1) + 𝑉(𝑘 + 1), 𝑋෠(𝑘|𝑘)൧ 𝐴் 

= 𝐴 𝑐𝑜𝑣 ቀ𝑋෠(𝑘|𝑘)ቁ 𝐴் + 𝐾𝐻 𝑐𝑜𝑣൫𝑋(𝑘 + 1)൯ 𝐻்𝐾்

+ 𝐾 𝑐𝑜𝑣൫𝑉(𝑘 + 1)൯ 𝐾் 

+𝐴 𝑐𝑜𝑣ൣ𝑋෠(𝑘|𝑘), 𝐻𝑋(𝑘 + 1) + 𝑉(𝑘 + 1)൧ 𝐾் 

+𝐾 𝑐𝑜𝑣ൣ𝐻𝑋(𝑘 + 1) + 𝑉(𝑘 + 1), 𝑋෠(𝑘|𝑘)൧ 𝐴் 

= 𝐴 𝑐𝑜𝑣 ቀ𝑋෠(𝑘|𝑘)ቁ 𝐴் + 𝐾𝐻 𝑐𝑜𝑣൫𝑋(𝑘 + 1)൯ 𝐻்𝐾் 

+𝐾 𝑐𝑜𝑣൫𝑉(𝑘 + 1)൯ 𝐾் + 𝐴 𝑐𝑜𝑣ൣ𝑋෠(𝑘|𝑘), 𝑋(𝑘 + 1)൧ 𝐻்𝐾்

+ 𝐾𝐻 𝑐𝑜𝑣ൣ𝑋(𝑘 + 1), 𝑋෠(𝑘|𝑘)൧ 𝐴் 

= 𝐴 𝑐𝑜𝑣 ቀ𝑋෠(𝑘|𝑘)ቁ 𝐴் + 𝐾𝐻 𝑐𝑜𝑣൫𝑋(𝑘 + 1)൯ 𝐻்𝐾் + 

𝐾 𝑐𝑜𝑣൫𝑉(𝑘 + 1)൯ 𝐾் + 𝐴 𝑐𝑜𝑣ൣ𝑋෠(𝑘|𝑘), 𝑋(𝑘 + 1)൧ 𝐻்𝐾் +

𝐾𝐻𝑐𝑜𝑣்ൣ𝑋෠(𝑘|𝑘), 𝑋(𝑘 + 1)൧𝐴்            (29) 

 By our definitions of K, H, and A, proof is now 
complete. 

Note that the independence of 𝑉(𝑘)  and 𝑋(𝑗)  for all 
𝑗, 𝑘 = 0,1,2. .. is utilized in this proof.  Also, notice that this 
implies that 𝑉(𝑘) must also be independent of  𝑋෠(𝑗|𝑗) for all 
𝑗 < 𝑘 = 0,1,2, . .., and this fact was also needed in the proof 
of this result. Also note that Theorem 2 was used. 

Finally, we show the second part of theorem, equation 
(19). 

 
𝑐𝑜𝑣ൣ𝑋෠(𝑘|𝑘), 𝑋(𝑘 + 1)൧ = 

[𝐼 − 𝐾(𝑘)𝐻(𝑘)]𝛷(𝑘, 𝑘 − 1) × 
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𝑐𝑜𝑣 ൤𝑋
^

(𝑘 − 1|𝑘 − 1), 𝑋(𝑘)൨ 𝛷்(𝑘 + 1, 𝑘) 

+𝐾(𝑘)𝐻(𝑘) 𝑐𝑜𝑣൫𝑋(𝑘)൯ 𝛷்(𝑘 + 1, 𝑘)        (19) 
 
Proof: 

𝑐𝑜𝑣ൣ𝑋෠(𝑘|𝑘), 𝑥(𝑘 + 1)൧ = 

𝑐𝑜𝑣൛[𝐼 − 𝐾(𝑘)𝐻(𝑘)]𝛷(𝑘, 𝑘 − 1)𝑋෠(𝑘 − 1|𝑘 − 1)

+ 𝐾(𝑘)𝑍(𝑘), 𝛷(𝑘 + 1, 𝑘)𝑋(𝑘)

+ 𝛤(𝑘 + 1. 𝑘)𝑊(𝑘)ൟ = 

[𝐼 − 𝐾(𝑘)𝐻(𝑘)]𝛷(𝑘, 𝑘 − 1) 𝑐𝑜𝑣ൣ𝑋෠(𝑘 − 1|𝑘 − 1), 𝑋(𝑘)൧ × 

𝛷்(𝑘 + 1, 𝑘) + 𝐾(𝑘) 𝑐𝑜𝑣[𝑍(𝑘), 𝑋(𝑘)] 𝛷்(𝑘 + 1, 𝑘) + 

[𝐼 − 𝐾(𝑘)𝐻(𝑘)]𝛷(𝑘, 𝑘 − 1) 𝑐𝑜𝑣 ቀ𝑋෠(𝑘 − 1|𝑘 − 1), 𝑊(𝑘)ቁ 

× 𝛤்(𝑘 + 1, 𝑘) + 𝐾(𝑘) 𝑐𝑜𝑣൫𝑍(𝑘), 𝑊(𝑘)൯ 𝛤்(𝑘 + 1, 𝑘) = 

[𝐼 − 𝐾(𝑘)𝐻(𝑘)]𝛷(𝑘, 𝑘 − 1) 𝑐𝑜𝑣ൣ𝑋෠(𝑘 − 1|𝑘 − 1), 𝑋(𝑘)൧ × 

𝛷்(𝑘 + 1, 𝑘) + 𝐾(𝑘) 𝑐𝑜𝑣[𝑍(𝑘), 𝑋(𝑘)] 𝛷்(𝑘 + 1, 𝑘) 
+𝐾(𝑘) 𝑐𝑜𝑣[𝐻(𝑘)𝑋(𝑘) + 𝑉(𝑘), 𝑊(𝑘)] 𝛤்(𝑘 + 1, 𝑘) = 

[𝐼 − 𝐾(𝑘)𝐻(𝑘)]𝛷(𝑘, 𝑘 − 1) 𝑐𝑜𝑣ൣ𝑋෠(𝑘 − 1|𝑘 − 1), 𝑋(𝑘)൧ × 

𝛷்(𝑘 + 1, 𝑘) + 𝐾(𝑘) 𝑐𝑜𝑣[𝑍(𝑘), 𝑋(𝑘)] 𝛷்(𝑘 + 1, 𝑘) = 
[𝐼 − 𝐾(𝑘)𝐻(𝑘)]𝛷(𝑘, 𝑘 − 1) 

𝑐𝑜𝑣ൣ𝑋෠(𝑘 − 1|𝑘 − 1), 𝑋(𝑘)൧ 𝛷்(𝑘 + 1, 𝑘) 

+𝐾(𝑘) 𝑐𝑜𝑣[𝐻(𝑘)𝑋(𝑘) + 𝑉(𝑘), 𝑋(𝑘)] 𝛷்(𝑘 + 1, 𝑘) = 

[𝐼 − 𝐾(𝑘)𝐻(𝑘)]𝛷(𝑘, 𝑘 − 1) 𝑐𝑜𝑣ൣ𝑋෠(𝑘 − 1|𝑘 − 1), 𝑋(𝑘)൧ × 

𝛷்(𝑘 + 1, 𝑘) + 𝐾(𝑘)𝐻(𝑘) 𝑐𝑜𝑣[𝑋(𝑘), 𝑋(𝑘)] 𝛷்(𝑘 + 1, 𝑘) 

≡
ௗ௘௙

[𝐼 − 𝐾(𝑘)𝐻(𝑘)]𝛷(𝑘, 𝑘 − 1) × 

𝑐𝑜𝑣ൣ𝑋෠(𝑘 − 1|𝑘 − 1), 𝑋(𝑘)൧ 𝛷்(𝑘 + 1, 𝑘) +

𝐾(𝑘)𝐻(𝑘) 𝑐𝑜𝑣൫𝑋(𝑘)൯ 𝛷்(𝑘 + 1, 𝑘)    (30) 

 
 This completes the proof of our theorem that gives an 
algorithm for finding the estimator’s covariance. 

Since the estimator is a linear function of normally 
distributed process noise and measurement vectors. we said 
the estimator, itself, is also Gaussian, describable by its 
mean vector and covariance matrix. Now that the covariance 
matrix is derived, we now give and prove a formula for the 
mean vector.  
  
Theorem 5:  

𝐸ൣ𝑋෠(𝑘 + 1|𝑘 + 1)൧ = ∏ 𝛷(𝑗 + 1, 𝑗)௞
௝ୀ଴ 𝐸[𝑋(0)]    (31) 

Proof (via mathematical induction): 
𝐸ൣ𝑋෠(1|1)൧ = (𝐼 − 𝐾𝐻)𝛷(1,0)𝐸ൣ𝑋෠(0|0)൧ + 𝐾𝐻𝐸[𝑋(1)] 

= (𝐼 − 𝐾𝐻)𝛷(1,0)𝐸ൣ𝐸[𝑋(0)]൧ + 𝐾𝐻𝛷(1,0)𝐸[𝑋(0)] 

= (𝐼 − 𝐾𝐻)𝛷(1,0)𝐸[𝑋(0)] + 𝐾𝐻𝛷(1,0)𝐸[𝑋(0)] 
= 𝛷(1,0)𝐸[𝑋(0)]    (32) 
 
where K and H are as previously defined in proof of equation 
1. Note that the above relation assumed that the random 
noises are of zero mean. 
𝐸ൣ𝑋෠(2|2)൧ = (𝐼 − 𝐾𝐻)𝛷(2,1)𝐸ൣ𝑋෠(1|1)൧ + 𝐾𝐻𝐸[𝑋(2)] 

= (𝐼 − 𝐾𝐻)𝛷(2,1)𝛷(1,0)𝐸[𝑋(0)] + 𝐾𝐻𝛷(2,1)𝐸[𝑋(1)] 

= (𝐼 − 𝐾𝐻)𝛷(2,1)𝛷(1,0)𝐸[𝑋(0)]
+ 𝐾𝐻𝛷(2,1)𝛷(1,0)𝐸[𝑋(1,0)] 

= 𝛷(2,1)𝛷(1,0)𝐸[𝑋(0)]    (33) 

 
 For the induction step of the proof, let us assume that 
𝐸 ቂ𝑋෠[𝑘|𝑘]ቃ = 

𝛷(𝑘, 𝑘 − 1)𝛷(𝑘 − 1, 𝑘 − 2) … 𝛷(1,0)𝐸[𝑋(0)] 
≡ Π 𝛷(𝑗 + 1, 𝑗)௞ିଵ

௝ୀ଴ 𝐸[𝑋(0)]    (34) 
 
 Then we have  

𝐸ൣ𝑋෠(𝑘 + 1|𝑘 + 1)൧ = 
(𝐼 − 𝐾𝐻)𝛷(𝑘 + 1, 𝑘)𝐸ൣ𝑋෠(𝑘|𝑘)൧ + 𝐾𝐻𝐸[𝑋(𝑘 + 1)]   
 (35) 

Using the fact that that  
𝐸[𝑋(𝑘 + 1)] = 

𝐸[𝛷(𝑘 + 1, 𝑘)𝑋(𝑘) + 𝛤(𝑘 + 1, 𝑘)𝑊(𝑘)] = 𝛷(𝑘 +
1, 𝑘)𝐸[𝑋(𝑘)] = Π 𝛷(𝑗 + 1, 𝑗)௞

௝ୀ଴ 𝐸[𝑋(0)]    (36)  
 
with the process noise W being of zero mean and also using 
the induction step assumption given above, 
 

𝐸ൣ𝑋෠(𝑘 + 1|𝑘 + 1)൧ = (𝐼 − 𝐾𝐻) Π 𝛷(𝑗 + 1, 𝑗)
௞

௝ୀ଴
× 

𝐸[𝑋(0)] + 𝐾𝐻 Π 𝛷(𝑗 + 1, 𝑗)௞
௝ୀ଴ 𝐸[𝑋(0)]  (37) 

 

∴ 𝐸ൣ𝑋෠(𝑘 + 1|𝑘 + 1)൧ = Π 𝛷(𝑗 + 1, 𝑗)௞
௝ୀ଴ 𝐸[𝑋(0)]  (31) 

 
and the result is proved. (Note we iterated the definition of 
𝑋(𝑘) and took its expectation to get the last expression on 
equation (36).) As this formula is clearly also the state mean, 
we give can a corollary. 
 
Corollary 2: The expectation of a KF is the same as that of 
the state, making the KF an unbiased estimator. 
Note for the special case where the transition matrix is 
constant, our result gives 
𝐸ൣ𝑋෠(𝑘 + 1|𝑘 + 1)൧ = 𝛷௞ାଵ(1,0)𝐸[𝑋(0)]    (38) 
 
 Recall that in this article, as in [Meditch 1969], we 
defined the transition matrix symbol 
𝛷(𝑗 + 1, 𝑗) as the transition matrix from time 𝑡௝ to time 𝑡௝ାଵ.  

One property of transition matrices is the fact that  
𝛷(𝑘)𝛷(𝑘 − 1). . . 𝛷(0) = 𝛷(𝑘 + 1,0) (39) 
[Meditch 1969]  
 Thus, this theorem, concerning the mean of the 
estimator, can be stated as 
𝐸ൣ𝑋෠(𝑘 + 1|𝑘 + 1)൧ = 𝛷(𝑘 + 1,0)𝐸[𝑋(0)]    (40) 
 
 Thus, given that 𝐸[𝑋(0)] = 𝑥଴ (41) is assumed known, 
this theorem gives the mean of the estimator. 
 
5. Simple Example 
 
We now give a simple numerical example of how to use this 
covariance in showing how close an estimate follows the 
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prediction, that is, mean. We also show that traditional error 
covariance that Kalman filters outputs for comparison.  
 Suppose we have a predicted model of phenomena, 
such as seismic data [Brillinger et al. 2004] or numerous 
other applications. We give numbers here that are chosen 
and simplified to illustrate how the new covariance is used 
in applications. For simplicity, assume the model is 2 
dimensions only and at time, say 𝑘 = 3, the predicted state 

is 𝐸[𝑋(3)] = ቂ
10
30

ቃ . Now suppose our Kalman filter 

estimation of the state is 𝑋෠(3) = ቂ
12
34

ቃ. To compare with our 

new composite covariance, suppose the error covariance is 

𝑃(3|3) = ቂ
1 . 1
. 1 2

ቃ.  

Suppose our newly derived composite covariance is 

𝑐𝑜𝑣ൣ𝑋෠(3|3)൧ = ቂ
1.44 1

1 2.25
ቃ. Note the variance of the 1st 

and 2nd components of the estimation error is 1 and 2 
respectively from the error covariance, while the variance of 
the 1st and 2nd components of the estimation covariance is 
1.44 and 2.25 respectively from the composite covariance. 
We conclude that the state estimate at time 𝑘 = 3 follows 
the actual state, 𝑋(3)  well via the traditional error 
covariance matrix, and the estimate also varies little from 

the predicted state  𝐸[𝑋(3)] = ቂ
10
30

ቃ  via our composite 

covariance matrix, which is computed by equations (18)-
(20) with assumed initial condition by equations (21)-(24).  

Now suppose at 𝑘 = 60, we have the predicted state 

𝐸[𝑋(60)] = ቂ
20
40

ቃ and suppose our Kalman filter estimation 

of the state is 𝑋෠(60) = ቂ
80
91

ቃ. Suppose the error covariance 

is 𝑃(60|60) = ቂ
1.4 . 5
. .5 2.4

ቃ  but the new composite 

covariance is now 𝑐𝑜𝑣ൣ𝑋෠(60|60)൧ = ቂ
49 1
1 64

ቃ . We 

conclude from this that at 𝑘 = 60, the estimate still follows 
that actual state quite well via variances in the traditional 
error covariance matrix, but this same estimate may deviate 
greatly from the prediction and most likely will not resemble 
the predicted path due to the larger variances of 49 and 64 
in the composite covariance matrix.  

As previously explained, since process noise contribute 
cumulatively with time, deviations from the prediction will 
not lessen, but, instead, in most applications will continue to 
grow with time, increasing our new covariance. Yet, the 
timing of when such deviations may get large is one of the 
new applications we explained, as it gives novel conjecture 
information, which may prove helpful to some analysts. 
        We also stated that another application of our 
composite covariance is to determine how each component 
of the estimate is correlated to another component. By the 
definition of correlation, we have in our example, at time  

𝑘 = 60, 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛ൣ𝑋෠ଵ, 𝑋෠ଶ൧ =
ଵ

√ସଽ√଺ସ
=

ଵ

ହ଺
.  

Since the maximum magnitude of a correlation is 1.0, we 
conclude that the 2 components of the estimate show very 
little correlation at time 𝑘 = 60 in our example. 
 
 

6. Conclusions 
 
In this article, we derived the “composite” covariance and 
mean of the Kalman filter state estimate. Since the Kalman 
filter estimate is a normally distributed (Gaussian) random 
process, this covariance, which differs from the error 
covariance, and the mean are required to exactly describe its 
probabilistic distribution. We described how this covariance 
is useful in statistical analysis of attributes of a Kalman filter 
state estimation and explained why such analysis is useful 
in various physical problems. We concluded with a simple 
illustrative numerical example. 
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Appendix 
 
Along with our estimator covariance just derived, some may 
like to know how the Kalman filter’s error covariance is 
affected by the process noise alone.  Our composite 
covariance of this article and the Kalman filter’s error 
covariance are modeled a priori (without empirical data), 
and we can actually derive still another new covariance in 
addition to the one in this article by merely setting the 
measurement noise covariance to be 0. That is, let  

𝑅(𝑘 + 1) = 0∀𝑘 = 0,1, ⋯  (42) 
This measurement noise covariance is used to compute 

equation (12), the Kalman gain matrix, K . Because this 
Kalman gain is used in computing the error covariance, 
which is done recursively over all time, we zeroed out the 
measurement noise error covariance for all measured time, 
not just the current one or the ones we are analyzing. Thus 
equation (12) now becomes  

𝐾(𝑘 + 1) = 𝑃(𝑘 + 1|𝑘)𝐻்(𝑘 + 1) × 
[𝐻(𝑘 + 1)𝑃(𝑘 + 1|𝑘)𝐻்(𝑘 + 1)]ିଵ∀𝑘 = 0,1, ⋯ (43) 
 
Our modified error covariance can be defined as 
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 𝑃(𝑘 + 1|𝑘 + 1|𝑉(𝑗); 𝑗 = 1,2, ⋯ , 𝑘 + 1) ≡ 
𝐸{[𝑋 (𝑘 + 1|𝑘 + 1) − 𝑋(𝑘 + 1)] × 

 [𝑋 (𝑘 + 1|𝑘 + 1) − 𝑋(𝑘 + 1)]் |𝑉(𝑗) ; 𝑗 = 1,2, ⋯ 𝑘 + 1}   
 (44) 
 

This indicates that we assume knowledge of the value 
of  𝑉(𝑗); 𝑗 = 1,2, ⋯  k+1, and so it is not random. The 
formula for this modified error covariance is the same as 
equation for 𝑃(𝑘 + 1|𝑘 + 1), that is equation (14), except 
that we use equation (43) for the Kalman gain. 

Analogously some analyst may also wish to know the 
behavior of the error covariance in the absence of random 
process noise. In this case we actually know the state but 
may still wish to check out the error covariance, perhaps in 
a laboratory to test measurement devices. Again, due to the 
fact that the error covariance formula is recursive, we must 
assume the process noise to be 0 for all time in order to 
derive error covariances conditioned upon knowledge of the 
states. That is, let 

 𝑄(𝑘) = 0∀𝑘 = 0,1, ⋯     (45)  
 

The new error covariance is defined to be 
 𝑃(𝑘 + 1|𝑘 + 1|𝑋(𝑗); 𝑗 = 0,1, ⋯ 𝑘 + 1) ≡ 
𝐸൛ൣ𝑋෠(𝑘 + 1|𝑘 + 1) − 𝑋(𝑘 + 1)൧ ×    

ൣ𝑋෠(𝑘 + 1|𝑘 + 1) − 𝑋(𝑘 + 1)൧
்

|𝑋(𝑗); 𝑗 = 0,1, ⋯ 𝑘 + 1ቅ

 (46) 
However, these new error covariances may be 

meaningless, since Kalman filters often tend to diverge 
when process noises have 0 covariance over all time. This 
divergence is because state models generally are not 
perfectly accurate and so the inaccuracy falls into process 
noise. For example, linear models are often used to model 
phenomena that is not truly linear [Tapley et al 2004]. 
Perhaps to a smaller extent, numerical errors may also 
contribute to divergence without process noise too. 
Therefore, we will not proceed with this. 

Recall since our model is discrete here, process noise 
covariance is discrete, and we represented it by 

𝑄(𝑘) ≡ 𝑐𝑜𝑣൫𝑊(𝑘)൯,  
where 𝑊(𝑘)  represents process noise at time 𝑘 =

0,1,2 ⋯. Empirically finding a good, hypothesized model 
for 𝑄 may be difficult, but discussion of it is beyond the 
scope of this article. [Tapley et al 2004] discusses this 
somewhat, regarding their application of Kalman filters. 

Finally, note that any covariance that is derived from 
the Kalman filter is also applicable to the Bayesian 
(generalized batch least squares) estimator. This is due to 
the following theorem. 

Theorem: The Kalman filter is equivalent to the 
Bayesian optimal estimator, given any admissible loss 
function [Meditch 1969]. 

 
Proof:  

For Kalman filters, the estimator is derived from the 
conditional expectation 𝐸[𝑋(𝑘)|𝑌(1), ⋯ , 𝑌(𝑘)]  where the 
random variables Y ‘s can be interpreted as the observations 
for the Kalman Filter [Meditch 1969]. Note that both the 
measurement noise and process noise are Gaussian. This 
implies the Bayesian optimal estimate must be the 
conditional mean of the state conditioned on the 
observations for any admissible loss function [Meditch 
1969]. Since any admissible loss function will work, it must 
surely work for the “mean square loss function” [Meditch 
1969]. Thus, Kalman filters are equivalent to Bayesian 
optimal estimators [Tapley et al 2004]. 

Note that a Bayesian estimator is the generalized 
version of the batch least squares. It is generalized in the 
sense that the parameters (or states) themselves are random 
instead of deterministic as in the least squares estimator in 
the traditional sense of the term. Furthermore, a Bayesian 
estimator can generalize a Kalman filter because the Kalman 
filter assumes white noises, but white is not required in a 
Bayesian estimator

 


