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Abstract: Buckling deformation of bedded rock slope is common in the northern region of the Hunza 
river along China-Pakistan International Karakoram Highway (KKH), Pakistan. In order to analyze the 
failure mechanism, an explicit general failure formula is established to depict the flexural buckling of 
plane slopes subject to seismic force based on the theory of column stability and stress equilibrium. A 
comparison is made between the flexural buckling subject to seismic force and the buckling without 
seismic force. The rock slope of K745 at KKH is analyzed to evaluate the effects of three key parameters 
– seismic force (horizontal acceleration), slope inclination angle and friction angle. 
 

Keywords: China-Pakistan International Karakoram Highway, seismic force, buckling failure, column 
stability, bedded rock slope 
 
 
1 Introduction 

  
The China-Pakistan International Karakoram 
Highway (KKH) has been constructed through 
three high mountain terrains – the Himalayas, 
Karakoram and Pamir, and two earthquake belts – 
Karakorum Pamirs earthquake belt and Himalayas 
earthquake belt. The route of the highway is 
characterized by highly fractured rocks, extensive 
areas of debris accumulation and high rates of 
geomorphological activities and has encountered 
many extreme geohazards related to rock slopes, 
landslides and buckling failure. They have posed 
significant potential threats to the construction and 

maintenance of the KKH. This paper will 
concentrate on analysis of buckling failure in this 
area. 

From the mechanism point of view, buckling 
failures are classified as flexural buckling of plane 
slopes, three hinge buckling of plane slopes and 
three hinge buckling of curved slopes (Goodman 
1976).  Flexural buckling failures may occur if 
certain geometrical conditions exist, as follows: 1) 
presence of stratified rocks with a columnar or slab 
shaped structure (Froldi and Lunardi 1995) and the 
cleavage is significant and regular, 2) the plane of 
the main discontinuities must parallel to the slope 
face, 3) both the length and the width of the rock 
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slab are far larger than its thickness, and 4) the 
inclination angle of the main discontinuities or the 
bedding planes must be larger than the friction 
angle of those discontinuities. Buckling occurring 
near the slope toe can be considered to be a 
debonding block (formation above the sliding 
plane in the dip direction) (Shou and Wang 2003).  

On the basis of field observations, the slopes of 
K745 and K765 in the northern region of the 
Hunza river along KKH satisfy the above 
conditions of flexural buckling. This buckling is 
regarded as a plane strain problem where the slab 
thickness is very small relative to its length. 
Buckling force is induced by rock’s own weight 
and external forces, such as water pressure or 
stress concentrations on the plane of the plates. 
Figures 1 and 2 show rock slopes of K745 and 
K765 located in the northern region of the Hunza 
River. The lithology is generally slate (Zhu et al 
2012), the inclination angle is about 57˚ ~ 80˚ and 
the slab thickness of rock slope is 0.10 ~ 0.82 m.  

A number of studies have been conducted to 
understand the buckling failure mechanism. Kutter 
(1974) described the buckling occurred in an open 
pit coal mine in England. Hoek and Bray (1981) 
pointed out it was easier to fail by buckling when 
the friction angle was small. Corbyn (1978) 
analyzed the stability of rock slopes subject to 
tensile stress in the outer fiber of a curved slab. 
Based on research by Hoek and Bray (1981) and 
Corbyn (1978), Cavers (1981) presented Euler’s 
expression for the maximum load per unit slope 
width before buckling occurred, established the 
conditions for buckling failure and analyzed the 
three modes of buckling failure in sedimentary 
rock layers. Furthermore, he presented three 
formulas for these three modes of buckling failure. 
In order to apply Euler’s concepts to slopes, he 
assumed that only a certain portion of rock layer 
located in the slope toe region buckles and the rest 
of the rock layer simply provided an axial load to 
the buckling portion of the rock layer. On the basis 
of base friction model tests, he gave a range of 
values for the ratio of buckling slab length to total 
slab length between 0.36 and 0.46. He further 
assumed a ratio of 0.5 for use, which is slightly 
conservative compared to the results of base 
friction models (Goodman 1976).  

Pant and Adhikary (1999) used the equivalent 

continuum (implicit joint) model based on 
Cosserat continuum theory and explicit joint  

 

 
Fig. 1 Buckling failure of rock bedded slope in K745 
 

 

  
 

Fig. 2 Buckling failure of rock bedded slope in K765 
 

model (FLAC) to study the mechanism of buckling 
failure of foliated rock slopes. Adhikary et al (2001) 
rearranged Caver’s expression for a non-
dimensional term named the critical force for 
flexural buckling, then presented a comprehensive 
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numerical model that was valid for large 
deformations and applied this model for analysis 
of flexural buckling phenomena in foliated rock 
masses. Liu and Zhou (2002) assumed bedded 
rock slopes as elastic boards and analyzed the 
failure of bedded rock slopes. Shou and Wang 
(2003) considered the seismic force and modified 
the Caver’s formula. They found that the length of 
the debonded sliding block subject to seismic force 
was very close to the slope length in reality. This 
finding is strongly compatible with the need for 
estimation of seismic effect on flexural buckling 
failure. Li et al (2007) attained the safety 
coefficient. Li and Zhang (2007) used the pseudo-
static method to analyze the stability of bedded 
rock slopes subject to seismic force. Pereira and 
Lana (2013) used finite element software named 
Phase2 of Rocsceinece Inc (2008) (Canada) to 
evaluate the buckling failure mechanism through 
stress–strain analysis. 

In order to understand the effects of the seismic 
force on rock slopes, this paper applies the pseudo-
static method to analyze the buckling of bedded 
rock slopes subject to seismic force. Based on the 
general explicit formula for flexural buckling 
failure, a comparison is made between flexural 
buckling of plane slope under no seismic force 
(case 1) and flexural buckling of the same slope 
subject to seismic force (case 2). For the slope of 
K745, the effects of three important parameters on 
flexural buckling, seismic force (horizontal peak 
acceleration), slope inclination angle α and friction 
angle Φj , are discussed. 

 
2 Flexural Buckling Subject to Seismic Forces  

 
Similar to Cavers (1981), the mechanical model of 
bedded rock slope buckling is simplified as a beam 
stability problem in this study and its deflection 
curve can be approximated by a linear function 
(Chajes 1974). This model satisfies with the 
classical buckling theory (Euler Method) with the 
assumptions that the column is straight and elastic 
and it obeys Hoek’s Law, as illustrated in Fig. 3.  
According to the theory of beam stability, an 
analytical solution is derived for the buckling slope 
failure taking into account the effect of earthquake 
expressed as follows. 

The critical load per unit width, /
cr

P b , before 
buckling occurs can be calculated as follows (see 
Fig. 3). 

 
2

2
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P K EI

b bl

π
=   (1) 

where b is unit width, E is Young’s modulus, K is 
a constant describing end conditions, I is the 
moment of inertia and lb is the length of slope 
subject to buckle, for a rectangular column.  

I can be calculated by 
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Fig. 3 Simplified model of flexural buckling on plane slope 
subject to seismic force 
 

In Eqn. (2), d is slab thickness. For a rock slab 
which contains cross joints perpendicular to the 
bedding plane, the end of the rock slope should be 
hinged and it seems reasonable to assume K = 1  
(Cavers 1981). 

The seismic force is resolved into two steady 
inertial components, Fex in x direction and Fey in y 
direction, respectively, acting on the center of 
gravity of the plane slope in the Goodman model 
(Fig. 3). 

If the horizontal peak acceleration aH and the 
vertical peak acceleration aV are determined, Fex 
and Fey can be calculated as follows, 
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( )cos sinex D H VF l d a aγ α α= −  

 ( )sin cosγ α α= +ey D H VF l d a a              (3) 

where lD is the length of the driving segment, γ is 
the unit weight and α is the inclination angle of the 
slope. 

To account for the weight of the rock slab, the 
portion of the slab above the hinge point will be 
added to the driving force that is acting on the 
slope. According to force equilibrium in the x 
direction, the driving force PD is calculated by  

( )sin cos tanD

D D ey j ex D

P
W W F F l C

b
α α φ = − + − −  (4) 

where Φj is friction angle, c is cohesion and WD is 
the weight of the block and equals to lDγd.  The    
driving force should be positive when 

 ( )sin cos tanα α φ− + − −D D ey j ex DW W F F l C ≥0. 

Consider a ratio lb/l = 0.5 as suggested by 
Cavers (1981) and let Eqn. (1) = Eqn. (4), the total 
slope length l at the critical condition of buckling 
is calculated as follows,   

( )
( )

2 3
3

sin cos sin cos
2.25

cos sin

π
γ α γ α α α φ

γ α α

=
 − + + 
 
− − −  

H V j

H V

Ed
l

d d a a tg

d a a c

  

                           (5)                            
where the friction force should be positive when 
cosα + aH sinα + aV cosα ≥ 0. If aV = 0 and aH is 
negative (pointing out of slope), α ≥ arccotangent 
(-aH). Units used in Eqn. (5) are as follows: E in 
GPa, aH and aV in m2/s, l and d in m, γ in kN/m3, 
Φj and α in degree, c in MPa. 

 
3 Case study 

 
3.1 Effects of seismic force 

A comparison is carried out below between 

flexural buckling of plane slopes subject to seismic 
force (case 2) and without seismic force (case 1). 
The properties of the rock mass and geometrical 
parameters are obtained from Cavers (1981) and 
are shown in Table 1. When α = 60º and aV = 0, if 
cosα + aHsinα + aVcosα ≥ 0, aH ≥ -0.058 g. Thus 
aH = ± 0.038 g is considered in case 2.  

In case 1, the total slope length l in the critical 
condition of buckling is calculated by the 
following formula from Cavers (1981). The 
relationship between l and d is illustrated in Fig. 4. 

In case 2, the total slope length l in the critical 
condition of buckling is obtained by Eqn. (5).  

The relations between the total length l and the 
slab thickness d are shown in Fig. 5 (a) for the 
condition where the horizontal seismic 
acceleration is in the same direction (aH is positive, 
pointing into the slope, as shown in Fig. 3. Fig. 5 
(b) presents the results when the seismic 
acceleration is in the opposite direction (aH is 
negative, pointing out the slope). 

2 3
3

2.25( sin cos )j

Ed
l

d rd tg c

π
γ α α φ

=
− −

              (6) 

 

 
Fig. 4 l varies with d (Cavers 1981)

 

Table 1 The properties of rock mass and geometrical parameters (Cavers 1981) 

γ (kN/m3) c (MPa) E (GPa) α ( º) d (m) Φj  ( º) 

25  0  16 60 

0.3048, 0.6096, 0.9144, 
1.2192, 1.524, 1.8288, 
2.1336, 2.4384, 2.7432 

3.048 

5 
15 
30 
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From Fig. 5 (a), when aH is positive and 
pointing into the slope, l presents an increasing 
tendency with the increase in the slab thickness d 

for both case 1 and case 2.  When Φj is constant, l 
of case 2 is larger than l of Case 1, it means that 
the slope remains more stable in case 2 than case 
1. Because a larger l need more critical driving 
force which means less chance for a slope to fail 
by buckling. In Fig. 5 (b), l presents an increasing 
tendency with the increase in the slab thickness d 

for both case 1 and case 2. When Φj is constant, l 
of case 2 is smaller than l of case 1, it means that 
the slope remains more stable in case 1 than case 
2. When Φj is constant, l  of  Fig. 5 (a) is bigger 
than l  of  Fig. 5 (b). It means that aH pointing into 
the slope favors the stability of slope.   

 
3.2 Analysis of the rock slope at K745 

According to the field investigations (Zhu et al 
2012) and the rock tests (Huang et al 2005), the 
mechanical properties of the slate at K745 are as 
follows: Young’s modulus 20 GPa, friction angle 
45° - 60° and unit weight 25 - 27 kN/m3.  

In addition, it is recorded that destructive 
earthquake seldom occurred during the period of 
1970 ~ 2006. The largest earthquake occurred near 
the Raikot bridge of KKH in November 2002. Its 
magnitude was M6.5 and the horizontal 
acceleration aH = 0.05 g (China Road and  Bridge 
Corporation 2007). Then a horizontal acceleration 
aH = 0.05 g is considered in calculation and the 
critical slope length l calculated by Eqn. (5) is 
31.54 - 32.36 m. The slope length in the field is 
15.58 m, which is smaller than the critical slope 
length. Therefore, the slope should not fail, 
buckling process might have involved in this slope 
deformation but did not reach the critical state. 

On the basis of section 3.1, only the negative 
seismic acceleration (pointing out of slope) is 
considered in following analysis. For the given 
slope of K745, influences from three parameters 
are analyzed, the negative seismic force 
(horizontal acceleration), slope inclination angle α 

and friction angle Φj (see Table 2). The parameter 
values used in this case analysis are shown in 
Table 3. The inclination angle to be considered is 
50° - 70°. Meanwhile, the friction force must exist 

and the horizontal acceleration in the range of -
0.37 g ~ 0 is taken into account. 

Case 3: with friction angle Φj = 45° and 60°, 
respectively, the critical total slope length l is 
calculated for various inclination angle α and 
different horizontal acceleration. The results are 
shown in Fig. 6. 

Case 4: with inclination angle α = 50° and 70°, 
respectively, the critical total slope length l is 
calculated for various friction angle Φj and 
different horizontal acceleration. The results are 
presented in Fig. 7. 
 
Table 2 Parameters from field investigation  

Parameters  Values 

Horizontal 
acceleration 

aH = -0.037g 
aH = -0.03g 
aH = -0.02g 

Inclination angle α 50°, 60°, 70° 

Friction angle Φj 45°, 50°, 55°, 60° 

 
Table 3  Parameters used in case analysis  

` 
Friction 

angle 
Φj 

Inclination 
angle 

α 

Horizontal 
acceleration 

Case 3 45°, 60° 50°, 60°, 70°  aH = -0.037 g  
aH = -0.03 g 
aH = -0.02 g Case 4 

45°, 50°, 
55°, 60° 

50°, 70° 

 
Figure 6 illustrate that at a specific horizontal 

acceleration, the total critical slope length l 
decreases with the increase in inclination angle α 
but with different variation trends. For example, 
the variation trend of Φj = 60° is much more 
significant than the trend of Φj = 45°. When the 
inclination angle is same, l decreases with the 
increase in horizontal acceleration. For example, 
when the inclination angle is 50°, the lower bound 
of l is 38.10 m, 45.73 m and the upper bound of l 
is 44.45 m, 96.75 m. When the inclination angle is 
70°, the lower bound of l is 32.09 m for both Φj = 
45°, 60°, and the upper bound of l is 34.58 m and 
36.31 m, respectively. The result suggests that the 
slope with a large inclination angle is less stable. 
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Fig. 5 l varies with d under horizontal seismic acceleration, (a) aH = 0.038 g and (b) aH = -0.038 g

 

 
 

Fig. 6  Critical slope length l varies with inclination angle α in different horizontal acceleration, (a) Φj = 45° and (b) Φj = 60° 
 
 

 
 

Fig. 7  Critical slope length l varies with friction angle Φj in different horizontal acceleration, (a) α = 50° and (b) α = 70° 
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Figure 7 illustrates that for a given horizontal 
acceleration, l increases with the increase in 
friction angle Φj but with different variation trends. 
For example, the variation trend of α = 50° is much 
more significant than the trend of α = 70°. A small 
variation of l occurs when α = 70°. If the friction 
angle is same, l decreases with the increase in 
horizontal acceleration. For example, when the 
friction angle is 45°, the lower bound of l is 38.11 
m, 32.09 m and the upper bound of l is 44.46 m, 
34.58 m; when the friction angle is 60°, the lower 
bound of l is 45.73 m, 32.09 m and the upper 
bound of l is 96.75 m, 36.31 m. The result suggests 
that a large friction angle can contribute to a high 
stability. 

 
4 Discussion 

 
Retrospective studies indicate that critical slope 
length is affected by three key parameters – 
seismic force (horizontal acceleration), slope 
inclination angle and friction angle. From the 
stability point of view, a horizontal acceleration 
pointing into slope leads to increase of friction 
force, which favors the stability of slope. If the 
sum of friction force and seismic force Fex exceeds 
the tangential component of gravity, the driving 
force becomes negative. There is no buckling 
problem.  

On the contrary, a horizontal acceleration 
pointing out of slope leads to increase of driving 
force and means higher possibility of failure. In 
this case, if a seismic force Fey exceeds the normal 
component of gravity (normal pressure), the 
friction force will be reduced to zero or become 
negative. At that moment, the driving segment 
may not be in contact with the underneath strata 
and the seismic force Fex will point down the slope. 
All of these will result in an increased driving force 
and the buckling potential becomes higher. In 
conclusion, a bigger negative horizontal 
acceleration (pointing out the slope), a larger 
inclination angle and a smaller friction angle will 
lead to a smaller critical slope length and a higher 
possibility of failure. The reason is that a bigger 
inclination angle means the bigger sliding force 
from the normal component of gravity, a smaller 
friction angle and a bigger negative acceleration 

lead to a smaller friction force and a bigger driving 
force for buckling.  

 
5 Conclusions 

 
Buckling is one type of deformation of bedded 
rock slope in the northern region of KKH. Seismic 
force in this region is an important parameter and 
should be taken into account in buckling failure 
research. In this paper, buckling of bedded rock 
slope subject to seismic force has been studied, 
involving an explicit failure formula, critical slope 
length characteristics with and without a seismic 
force, and the effects of seismic force (horizontal 
acceleration), slope inclination angle and friction 
angle on buckling failure. The following 
conclusions can be made from this paper: 1) 
Horizontal seismic acceleration with its direction 
pointing out of slope favors the buckling failure of 
slope; 2) During a buckling process, for a given 
seismic force and a slab thickness, a bigger slope 
inclination angle and a smaller friction angle lead 
to a higher possibility of buckling failure; and 3) 
Eqn. (5) is suitable for different seismic force 
situations, negative or positive. 
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