Euclid’s Elements and
Philosophical Development
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The publication of Euclid’s Elements about 300 B.C. represented a
stunning accomplishment no less for Greek philosophy than for
Greek mathematics. His text recapitulated two centuries of intense
search for foundations of geometry carried on simultaneously and
interactively with the quest for origins and method in philosophy.
In company with the earlier Aristotelean logical and philosophical
texts Euclid’s synthesis represents the high point of Greek
rationalism’s drive for systematic perfection. And, like any
philosophical classic, the Elements both set the lines of future de-
velopment and posed in a subtle way questions which were to goad
mathematicians and philosophers to this day. Along with E. S.
Stamatis’ recently completed second edition of Heiberg’s critical text
long out of print, an increasing number of contemporary studies
calls our attention to an apparently inexorable line of conceptual
development from Euclid to the present. Even a brief survey of these
results can provide new insights into the interplay of philosophical
and mathematical thought.

Let us first review the text of the Elements, considering its origins,
and then see the way some of its questions have been developed in
this century, paying attention to the interaction of mathematical and
philosophical progress. The First Book of the Elements will be of
special interest.?

Precious little is known of Euclid himself. Most of our knowledge
comes from the late 3rd century A.D. mathematician Pappus and
from the Neoplatonist Proclus (412-485).2 The former reports that
Euclid taught in Alexandria, the latter that he lived in the reign of

1. Euclidis Elementa, vols. I-V 1-2 (Leipzig, 1969-1977), edited by E. S.
Stamatis and based on the text (1883-1916) of J. L. Heiberg. Still
immensely useful is Sir Thomas L. Heath’s English translation and
commentary The Thirteen Books of Euclid’s Elements. (1956 Dover reprint of
the 2nd (1926) edition published by the Cambridge University Press.)

2. Pappus, whose Synagoge or Collection is a guide to Greek geometry,
mentions Euclid’s students at Alexandria (vii, 35). Of his commentary on
the Elements we have only an Arabic translation of the Commentary on
Book X. (Arabic Text and Translation by W. Thompson. Cambridge, Mass.
1930. Harvard University Press). Proclus’ Commentary on the First Book of
Euclid’s Elements is of great value for the history of Greek philosophy and
mathematics. The Greek text has been edited by G. Friedlein (Leipzig,
1873, reprinted 1973, Teubner Verlag). There is an English translation by
Glenn R. Morrow (Princeton University Press, 1970).
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Ptolemy the First (c.306-283), and that “by choice he was a Platonist
and was versed in this philosophy.” The Elements is not Euclid’s
only extant work. We have also the Data, Sectio Canonis (Elements of
Music), Division of Figures, Optics, Catoptrics, and the Phaenomena.
Knowledge of some lost works is also provided by Pappus and
Proclus.

Our knowledge of the development of Greek geometry prior to
Euclid depends significantly on a now lost history by Eudemus of
Rhodes (fl. 320 B.C.), a student of Aristotle. Proclus adapted a
summary of this history for his commentary on the First Book of the
Elements. Eudemus recorded “(books of) Elements (stoicheia)”” by
Hippocrates of Chios (c. 410 B.C.), “the first of whom we have any
record who did so.” Hippocrates’ text was followed by Elements
composed by a certain Leon roughly contemporary with Plato. Later
another book of Elements was published by Theudius of Magnesia,
a member of the Academy in Plato’s time. Euclid’s text then appears
as the end product of a sequence of works of which all have
perished, eclipsed by the appearance of the Euclidean treatise.
Proclus remarks that “Euclid . . . brought together the Elements,
systematizing many of the theorems of Eudoxus, perfecting many of
those of Theaetetus, and putting in irrefutable demonstrable form
propositions that had been rather loosely established by his
predecessors.”’3

Thirteen Books comprise the Elements. Two supplementary Books
were included but scholars no longer attribute them to Euclid.

The First Book begins abruptly with ““Definitions,”” ““Postulates,”’
and “Axioms” (or “Common Notions”), followed immediately by
48 propositions, deduced only, as Euclid apparently thought, from
these starting points by logical means or rules of inference pre-
sumed known and accepted by his readers. Neither for this Book
nor for the whole text is there stated purpose, historical survey, or
suggestion of sources, prerequisites, or motivations. We shall dis-
cuss the Definitions and Postulates more in detail a bit later. The
Propositions themselves fall into three groups. The first group (I
1-26) is mostly concerned with triangles, the second (I 17-32) in-
cludes the critical theory of parallel lines and the angle sum theorem
for triangles, while the last group (I 33-48) studies parallelograms,
triangles and squares in terms of areas. We shall see that there is a
momentous division between propositions I 28 and I 29.

The Second Book continues the third section of the first. It consti-
tutes a geometrical equivalent of our elementary classical algebra of
3. Commentary, ed. Friedlein, p.64-68. Eudoxus of Cnidos was a contem-

porary of Plato and, possibly, one of his students. Francois Lasserre has
edited the fragments attributed to him (Texte und Kommentare 4, 1964).
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quadratic equations. Its theorems are not all geometrical theorems
but mostly algebraic ones in geometric form whose origins can be
traced to Babylonian sources. The Third Book begins a study of circle
geometry. Book Four introduces problems dealing with polygons
inscribed or circumscribed to circles. A manuscript scholiast insists
that this is all ““the discovery of the Pythagoreans.”*

Book Five details Eudoxus’ theory of proportion. The
Pythagorean cosmological teaching that all reality is whole numbers
or ratios of whole numbers was crippled by the discovery that the
ratio of the side of a square to its diagonal could not be expressed as
the ratio of two whole numbers.3 Eudoxus resolved the mathemati-
cal problem in a geometrical way, letting segments or areas repres-
ent magnitudes. He set on a firm foundation the geometry of prop-
ortion and similarity. The treatment of the problem in a purely
arithmetical way had to await the 19th century response of Dede-
kind and Weierstrass to the philosophical challenge probing the
foundations of differential and integral calculus. According to a
scholiast (recorded in a 13th century manuscript) the arrangement
and sequence of Book Five is that of Euclid himself. This general
theory is applied to the geometry of similar figures in Book Six. The
Book develops the Pythagorean “application of areas,” a technique
which is the geometrical equivalent of an algebraic solution of quad-
ratic equations with at least one positive root. As in Book Two, the
content is Babylonian in origin.

Books Seven to Nine are “arithmetical books.” They study in a

4. Heiberg-Stamatis, V 1, p. 204. Cf. also E. Neuenschwander, “Die
ersten vier Biicher der Elemente Euklids,”” Archive for the History of the Exact
Sciences 9 (1972/3) 325-380. His careful conclusions are that the contents of
Books Two and Four and large sections of Book Three are to be attributed
to the Pythagoreans and even that some results on Book One were
available to them. O. Neugebauer suggested the links between Babylonian
and Greek Mathematics in Vorgriechische Mathematik (Berlin, Springer
Verlag, 1934. 2nd ed. 1969). Following Neugebauer’s lead Bartel L. Van
der Waerden studied the Pythagorean geometric transformation of
Babylonian algebraic techniques in his Science Awakening (Groningen,
Noordhoff, 1954. English translation by A. Dresden, with additions of the
author. New York, Oxford University Press, 1961). Cf. Also O.
Neugebauer, “Zur geometrischen algebra,” Quellen und Studien zur
Geschichte der Mathematik, Astronomie, und Physik 3 (1936) B 245-259.

5. Cf. W. R. Knorr, The Evolution of the Euclidean Elements. A study of the
Theory of Incommensurable Magnitudes and Its Significance for Early
Greek Geometry. (Boston, D. Reidel, 1975). He dates the discovery of the
incommensurability of side and diameter of a square between 430 and 410
B.C. Cf. S. Unguru review in Isis 68, 2 (1977) 314-316. See also K. von Fritz,
“The discovery of incommensurability by Hippasus of Metapontem,”
Annals of Mathematics (2) 46 (1945) 242-264.
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geometrical way the properties of certain integers: primes, squares,
cubes, perfect numbers, etc. Van der Waerden, developing a 1904
thesis of Paul Tannery, has established that the first 36 theorems of
Book Seven were taken over by Euclid without substantial change
from a Pythagorean text of the fifth century B.C. Also, he adduces
ample reasons (in terms of its murky logical patterns) to attribute the
main part of Book Eight to Archytas of Tarantum who introduced
Plato to the exact sciences and the philosophy of Pythagoras. O.
Becker observed that in Book Nine the last 16 theorems are nothing
more than an appendix of Pythagorean teaching on even and odd
numbers dating from the middle or first half of the fifth century
B.C.®

Book Ten, an extensive unified theory of incommensurable line
segments and often considered the most perfect book of the
Elements, is linked with Theaetetus, the young Athenian killed in
battle in 369 B.C., and honored by Plato’s dialogue. In fact, parts of
Plato’s dialogue and the beginning of Book Ten are related to each
other. For to prove the proposition he states at 147D - 148A
Theaetetus needed the 5th, 6th, and 9th propositions of Euclid’s
Book. Both a scholiast and Pappus add that the last of these proposi-
tions was discovered by this mathematician, though his proof was
surely different from Euclid’s which depends on Eudoxus’ theory of
proportion not available to Theaetetus. This theory of irrational
magnitudes, prompted by the Pythagorean impasse, developed by
Theodorus of Cyrene and perfected by Eudoxus and Theaetetus
may be considered one of the most significant achievements of
Greek mathematics. Unhappily, despite references in Aristotle, we
have little direct testimony of the various steps leading from
Pythagoras to Euclid, and interpretation of both the Platonic and the
Euclidean texts have vexed ancient and modern commentators
alike. The most successful exegesis to date seems to be the recent
work of Wilbur Knorr.”

6. Cf. Science Awakening, p. 110-115, 152-155. Becker’s paper ‘Die Lehre
vom Geraden und Ungeraden im Neunten Buch der Euklidischen
Elemente”” appeared in Quelle und Studien zur Geschichte der Mathematik 3
(1936) B 533-553.

7. W. Knorr, op. cit. note 5, devotes the core of his study to a new
interpretation of this passage. Cf. W. Thompson’s Commentary of Pappus on
Book X, cited in note 2, especially pp. 72-76, 180-184, and also Sir Thomas
L. Heath, A History of Greek Mathematics, 2 vols. (Oxford, 1921), vol. I, pp.
204-208, 402-411. Van der Waerden, Science Awakening, pp. 165-172
attributes all of Book Ten to Theaetetus. The scholium mentioned is
reproduced in Heiberg-Stamatis, V 2, p. 113, #62, and in the Loeb Classical
Library Text Selections Illustrating the History of Greek Mathematics, vol. 1,
pp. 380-381 (I. Thomas, editor. London, 1939). The problem of
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Books Eleven to Thirteen deal with three-dimensional or solid
geometry. Book Thirteen aims to construct the five regular (Platonic)
solids and to circumscribe each by a sphere. Proclus, with exagger-
ated enthusiasm for Plato, maintained that Euclid thought the pur-
pose of the Elements as a whole was the construction of these figures
mentioned by Plato in the Timaeus. Some evidence suggests that the
Book was essentially written by the author of Book Ten, Theaetetus.

This extensive Greek activity Euclid surveyed and unified in his
text. Unfortunately, since he recorded no trace of experimentation
done to establish the procedures, definitions, postulates and axioms
of his geometry, we have to look carefully elsewhere for such traces,
and especially in the text of Aristotle.

Now to return to the First Book. Readers of the Elements often find
difficulty in the very first definitions: a Point is that which has no
parts, a Line is length without breadth. Not only is there seeming
ambiguity in the formulations, but also the definitions do not and
cannot function as definitions in the propositions and constructions
justified by the postulates and axioms. For Euclid these definitions
apparently served to clarify the nature of the idealized physical
objects his geometry studied. And the assertions of mathematics
were true and not just hypothetically correct. Mathematics, and
geometry in particular, was of interest precisely because it asserted
the truth of some aspect of extramental reality. It was only with
David Hilbert and the shift to formalism in the late nineteenth
century consequent on the discovery of noneuclidean geometry that
the need for undefined and nonreferent basic terms was asserted
and the hypothetical nature of mathematics proclaimed. Plato, in
the Republic, and Aristotle in the Posterior Analytics had already
established that any science needs unprovable first principles as
starting points.® These are Euclid’s Postulates and Axioms. How
precisely they differ is disputed, but need not detain us here.

determining what kind of evidence, if any, the story in Theaetetus
147d-148b provides for the actual historical developments in Greek
mathematics is also studied by M. F. Burnyeat, ““The Philosophical Sense
of Theaetetus’” Mathematics,” Isis 69 (1978) 489-513. His purpose is to
vindicate the essential historicity of the story more carefully than
previously and to bring out the philosophical sense of the scene, that is, its
contribution to the methodological preliminaries to Plato’s inquiry into
knowledge. His independent analysis generally agrees with Knorr's
although it diverges on the important interpretation of 147d. A number of
Knorr’s interpretations of the history of earlier Greek mathematics depend
crucially on this interpretation.

8. Republic, vi. 510b-c; Posterior Analytics 110, 76a30-77a2. See A. Wedberg,
Plato’s Philosophy of Mathematics (Stockholm, Almqvist and Wikell, 1955). A
useful collection and commentary on Aristotelean texts on mathematics is
found in the posthumous work of Sir Thomas L. Heath, Mathematics in
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The first four of Euclid’s postulates are succinct: Be it postulated: I.
To draw a straight line from any point to any point; II. To produce a
finite straight line continuously in a straight line; III. To describe a
circle with any center and radius; and IV. That all right angles are
equal to one another.

The Fifth Postulate precipitated a two thousand year debate in
mathematics and a crisis in philosophy. Euclid postulates: V. That
if (A:) a straight line meet two straight lines so as to make the
interior angles on the same side of it taken together less than two
right angles, then (B:) these straight lines, being continually
produced, shall at length meet on the side on which are the angles
which are less than 2 right angles.

What is the Fifth Postulate problem? To begin, note that in terms
of complexity alone the postulate stands suspiciously apart from the
first four. Even more disturbing to the Greek geometers was that its
converse was proved by Euclid in proposition I 17, as well as its
contrapositive in I 29. Schematically the relation of the Fifth Post-
ulate and these propositions is this:

P V :IfA, thenB Proposition

I 29 :If not B, then not A Contrapositive

I 17 :IfB, then A Converse.

I 28-29: If not A, then not B Contrapositive of Converse.

Proclus asks “Is it not ridiculous that theorems whose converses are
demonstrable should be ranged among the indemonstrables?”” and
poses the problem when he insists that the Fifth Postulate both be
struck from the list altogether and a proof be provided based on the
first four postulates alone. Echoes of this dissatisfaction are also
heard in his comments on the proof of I 29 for which for the first time
Euclid uses (reluctantly?) the Fifth Postulate.

In many textbooks the troublesome postulate is replaced with an
equivalent formulation: Through a point not on a given line, pre-
cisely one parallel line can be drawn. Thatis, Euclid’s five postulates
have this proposition as a logical consequence, and the first four
postulates and this proposition have the fifth postulate as a conse-

Aristotle (New York, Oxford University Press, 1949). For a discussion on
how the Aristotelean axiomatics of Posterior Analytics 1 reflects certain
aspects of the practice of Greek mathematicians as known to Aristotle
from a study of a pre-euclidean work of Elements, see A. Gomez-Lobo,
"Aristotle’s Hypotheses and the Euclidean Postulates,” The Review of
Metaphysics 30 (1977) 430-439. This is also a criticism of the classical T. L.
Heath and H. P. D. Lee thesis that the Aristotelean definitions match the
definitions in Euclid, the axioms in Aristotle correspond to the Euclidean
common notions and that the pendant to the Euclidean postulates is found
in Aristotle’s hypotheses.
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quence. In this way, whatis called the Fifth Postulate Problem is also
called the Problem of Parallels. It is easily shown that the Fifth
Postulate is equivalent to the proposition that the sum of the interior
angles of a triangle is 2 right angles.

Proclus was not the first to pose the Fifth Postulate Problem or the
Problem of Parallels. Indeed, he preserves for us (invalid) proofs by
Claudius Ptolemy (c. 150 A.D.) of Postulate V and of I 29. He also
mentions the efforts in this matter of his predecessor Geminus.
After a criticism of Ptolemy’s proof he proposes his own (invalid)
proof of the disputed postulate, failing to observe that one of his
own assumptions either itself needs Euclid’s Postulate for proof, or
being taken as a postulate, then becomes equivalent to the Fifth
Postulate.

Although Aristotle, in the Prior Analytics,® had already pointed
out the danger in this very task, this vicious circle situation will recur
countless times in the research efforts of both Arabic and Western
mathematicians until Gauss, Bolyai, and Lobachevskii simultane-
ously and independently resolve the Fifth Postulate Problem with
the discovery of hyperbolic noneuclidean geometry in the early
nineteenth century. Their geometry retains Euclid’s first four post-
ulates but replaces the parallel postulate with the contrary assertion
that through a given point not on a specified line, at least two
distinct parallel straight lines may be drawn.

Or better, perhaps, with the rediscovery of noneuclidean
geometry. For we can see the perspicacity of Euclid in his recogni-
tion of the need for a postulate specifying the resolution of the
parallels problem. Moreover, Euclid’s unwillingness to use Post-
ulate Five until I 29 means that his first twenty-eight propositions
are also valid in hyperbolic noneuclidean geometry. The numerous
results characteristic of Euclidean geometry and distinguishing it
from hyperbolic geometry only begin with 129. Itis tempting here to
say that Euclid was the first noneuclidean geometer! A bit more
accurately, though, contemporary mathematicians say these are
twenty-eight propositions of neutral or absolute geometry.

But let us now turn back the clock a bit more and search in the text
of Aristotle where, as Professor Imre Toth has noted,!® certain
passages suggest the possibility of an early Greek ““noneuclidean”
9. Prior Analytics II 16, 64b28-65a9. Cf. Heath, Mathematics in Aristotle,

. 27.
fO. Imre Toth, “Das Parallelproblem im Corpus Aristotelicum,” Archive
for the History of the Exact Sciences 3(1966/7) 249-422. He provides a
summary presentation in ““Non-Euclidean Geometry before Euclid,”
Scientific American (1969) 221(5) 87-98. The original paper is reviewed by C.

Nicasius, “La Conscience Malheureuse dans la Géométrie Grecque,”
Archives de Philosophie 31 (1969) 285-7.
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approach to the problem of parallels. Toth observes that the critical
proposition I 29 is incompletely proved by Euclid but that the neces-
sary missing parts can be found in Aristotle’s Prior Analytics 11, 17
(66a 11-15), a text probably composed a good half century prior to
the Elements. In form, Euclid’s proof is indirect. Essentially, to get
his conclusion, he must show that two angles A and B are equal.
Using the reductio ad absurdum technique he employs Postulate V to
show that if A be greater than B, then a contradiction ensues, and
prematurely concludes that A and B are equal. Aristotle, however,
provides the missing proof that if A be less than B, a contradiction
also ensues, and thus the only possibility is that A and B are equal.
These three cases correspond to the three possibilities for parallels,
that is, through a given point not on a line there are many parallels,
precisely one parallel, ornone atall. If A is greater than B, then more
than one parallel can be drawn, if A is less than B, no parallel can be
drawn, while if A equals B, a unique parallel can be drawn. Con-
temporary mathematicians see each situation for parallels specify-
ing (in modern terminology) a type of geometry: hyperbolic, elliptic,
or parabolic (Euclidean). Aristotle’s proof shows that on the
strength of the first four Euclidean postulates elliptic geometry, the
second case, may be ruled out. But it takes an explicit assumption of
the Fifth Postulate, as Euclid indeed made, to rule out the first or
hyperbolic case.

Thus Toth argues that the pre-euclidean geometers recognized
that the case of elliptic geometry was inconsistent with even what
would be the first four of Euclid’s postulates, but what is more
interesting, that there was seen a possibility of choice between the
geometry of a single parallel and that of more than one parallel.
Evidence is marshalled from texts of the Aristotelean school, the
Magna Moralia and the Eudemian Ethics, which compare the influ-
ence of basic principles on ethical values to the influence of post-
ulates on the essence of geometrical objects, for example, that in a
triangle the sum of the interior angles is equal to 2 right angles, a
property that is true of triangles only in Euclidean geometry.

In these texts the Euclidean situation is considered as hypothetical
as the other two and all three situations are presented as being
equally possible. The Aristotelean text admittedly hesitates at this
possibility (Eudemian Ethics II, 6, 1222 23-41), no doubt because of
the unexamined understanding that geometry was direct but ab-
stract knowledge of our sensible physical world. So if, logically,
there were several possibilities for a postulate specifying the nature
of parallels, one chooses, freely, that postulate which is in accor-
dance with physical reality at least as perceived in geometric diag-
rams. Toth remarks:
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As in (Aristotle’s) ethics it is the ethical sense which decides
what is right and what is wrong, so here in geometry the decision
between principles is made by nous, the intellectual intuition,
alone. It is entirely likely that this conception was a theoretical
justification for the deadlock in which ended the attempts to
demonstrate this fundamental proposition of Euclidean
geometry (i.e. Postulate V) as a theorem of absolute geometry.

Toth is at pains to point out that Aristotle for all of his perplexity at
the situation does not assert that propositions arising from geomet-
ries other than Euclidean are false. They are correct insofar as they
do not derive from a logical error in the argumentation from first
principles to conclusion. But the choice between two opposite
geometries appears to Aristotle almost as an ethical one: choose the
good geometry (the unique parallel case, Euclid’s Fifth Postulate) in
accordance with nature, or the wrong one (more than one parallel,
the hyperbolic case) against nature.?

We do not know who explicitly first made the choice. Relying on
Proclus’ testimony, Toth conjectures that it was Euclid himself. At
any rate, the prestige of Euclid’s text confirmed this choice of a
geometry which accorded with the observed physical reality of
accurately drawn figures and whose need was perceived by
geometers contemporary with Aristotle. The fact that there was a
genuine mathematical choice was obscured until the nineteenth
century. Because of the success and genius of his Elements Euclid
provided a foundation for geometric development, especially by
Apollonius and Archimedes. But not until the (re)discovery of
hyperbolic noneuclidean geometry was there the possibility of un-
derstanding the ground and significance of the choice.

But let us now consider a more general source problem. For the
genesis of the systematic deductive method found in the Elements is
still shrouded in mystery. It most certainly appears, like philosophy
itself, to be an original Greek accomplishment. It too seems to be
linked with philosophical method. Widely varying hypotheses have
been offered. The Soviet mathematician A. N. Kolmogorov argued
that the change in the character of mathematics from the practical
computational rules of Egyptian and Babylonian technology can be
attributed to the advanced socio-political and cultural development
of the Greek city-states in the fifth century B.C. This generated a
high level of the art of dialectics and the Sophist phenomenon. In
addition, the genesis of philosophical thinking independent of relig-
ion showed the need to account rationally for natural phenomena
especially in the face of difficulties created by the Sophists. In turn

11. Toth, op. cit., p. 98.




Dionysius 48

these developments gave mathematics new goals and methods. The
Euclidean axiomatic method was the result.!2

Van der Waerden specifically put the beginning of the deductive
method with Thales (624-547), who probably had the task of dis-
criminating between variant geometric volume and area formulas
from Egyptian and Babylonian traditions. Thales determined the
correct formulas and fitted them into a logically connected system.
Van der Waerden asserts:

This is exactly what he did, according to Eudemus, and it is
exactly as the beginning of such a logical system that one may
expect to find such Irish bulls as: vertical angles are equal, the
base angles of an isosceles triangle are equal, a diameter divides a
circle into two equal parts, etc.!3

Sir Thomas L. Heath, in his monumental History of Greek
Mathematics, also held this view. However, it is not widely accepted
today because of skepticism about the accuracy of the Eudemian
testimony on which it depends.

More conservatively, Otto Neugebauer and Kurt von Fritz place
the origin of deductive form much later and consequent on the fifth
century Pythagorean discovery of the incommensurability of side
and diagonal of a square. For them the development of deductive
mathematics and its formulation on definitions and postulates are
linked with the birth of Aristotelean logic. Morris Kline explicitly
attributes such formulation to Eudoxus as a result of his research in
the theory of incommensurable ratios preserved, as noted, in the
Fifth Book of the Elements.14

Francois Lasserre uses Plato’s testimony (147 D) that Theaetetus
was the first to understand that a mathematical theory develops
from definitions which are broad enough to contain within them the
solutions of all the problems posed in such a theory. He concludes
that:

It is not before Leon, the second author of Elements (in point of

12. Great Soviet Encyclopedia, s.v. Mathematics. (The 3d edition (1970,
English translation 1973) article “Axiomatic Method” by I. A. Gastev and
E. S. Esenin-Volpin does not treat this question in detail.)

13. Science Awakening, p. 89.

14. Cf. Otto Neugebauer, The Exact Sciences in Antiquity (2nd edition.
Providence, Rhode Island, Brown University Press, 1957. Paperback
reprint, Harper Torchbooks, New York. 1962), pp. 147-9. In addition to his
paper cited in note 5, cf. also K. vonFritz: “Die APXAI in der griechischen
Mathematik,”” Archiv fiir Begriffsgeschichte 1 (1955) 13-103. (Reprinted in his
Grundprobleme der Geschichte der Antiken Wissenschaft, Berlin, De Gruyter.
1971). Morris Kline: Mathematical Thought from Ancient to Modern Times
(New York, Oxford University Press, 1972), p. 50.
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time), that the ideas of an axiom, a postulate, an hypothesis —in
short, the first principles of mathematics — are acknowledged
and defined . . . The initial attempt at a generalization which
embraces . . . specific sciences in its turn and which can include
all mathematics under the same laws, dates only from Eudoxus of
Cnidus.s

The Hungarian scholar Arpad Szabo has developed an exten-
sively detailed but controversial hypothesis about this transforma-
tion of mathematics into a deductive science based on definitions
and axioms.!6 His argument looks to the transition of Greek
mathematics from Pythagorean arithmetic and number theory to
geometry in the context of the dialectic of the Eleatic philosophers
Parmenides and Zeno. Szabo's textual study purports to show that
arithmetic itself was an independent further development of the
Eleatic philosophy of being, with number an intellectual multiplica-
tion of the unity of being. This philosophy provided adequate range
for arithmetic once the essentially new definition of number had
been introduced by the Pythagoreans. The definition itself was nota
basis for opposition between Pythagoreans and Eleatics. Indeed,
Szabo argues

(the definition) proved so productive that it allowed further
extension of the Eleatic method and the construction of a non-
contradictory discipline — arithmetic — which almost seemed to
be a new and independent province of Eleatic philosophy. The
Pythagorean arithmetic has become the greatest and most lasting
creation of Eleatic philosophy.*”

But this success could not be duplicated in geometry. A paradox
of Zeno, as recorded by Aristotle,'® forced the geometers along
another line of development, Zeno asserted ““Half the time equals its
double.” He attempted to prove this by his characteristic and
pioneering reductio ad absurdum technique which was adopted by
mathematicians and later appeared with great effectiveness in the

15. F. Lasserre, The Birth of Mathematics in the Age of Plato (Larchmont,
N.Y. American Research Council, 1964. H. Mortimer, tr.)

16. ““Anfange des Euklidischen Axiomensystems,”” Archive for the History
of the Exact Sciences 1 (1960) 37-106, “The Transformation of Mathematics
into Deductive Science and the Beginnings of its Foundation on
Definitions and Axioms,” Scripta Mathematica 27 (1964) 27-49, 113-139;
“Greek Dialectic and Euclid’s Axiomatics,”” in I. Lakatos (ed.), Problems in
the Philosophy of Mathematics (Amsterdam, North Holland, 1972), pp. 1-27.

17. In Scripta Mathematica (note 16), p. 137.

18. Aristotle, Physics VI 9 239b-240a18. Cf. Heath, Mathematics in Aristotle,
pp- 137-140.
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Elements. The paradox is of interest especially since the concepts
“half” and ““double” can be easily replaced by the concepts “part”
and “whole.” Szabo argues that Euclid’s Eighth Common Notion or
Axiom “The whole is greater than the part” was formulated as an
axiom precisely because someone using paradoxical argumentation
like Zeno’s contested its truth. When the consequences of this
position were seen, the geometers were compelled to accept the
original statement as a theorem evident in itself, but not capable of
being proved. It became an axiom for them.

Thus the line of demarcation was the axiom, an empirical truth
that could not be proved, could apparently even be refuted in some
non-geometrical cases, but had to be chosen as the basis of further
demonstration. The foundations of geometry, for all of being influ-
enced by Eleatic philosophy, took a view antithetical to this
philosophy.

Szabo’s proposals have been challenged by a number of percep-
tive critics. University of Chicago professor Ian Mueller!® views
Szabo’s hypothesis that Parmenides had a central position in the
history of mathematics and that the change from ‘empirical’ to
‘pure’ mathematics is closely connected with the idealistic, antiem-
pirical character of Eleatic and Platonic philosophy as unnecessary.
The conception of Greek mathematics in its developed state on
which these hypotheses rest is not justified by the character of the
Elements as Mueller analyzes it. Thus he argues that the derivation of
a Euclidean proposition is an experiment performed on idealized
physical objects. The experiment is limited by preliminary agree-
ments (first principles: definitions and axioms) about the nature of
the objects, some of their properties, and the operations that can be
performed on them. Admittedly, Euclid’s argumentative procedure
was not empirical in the sense that Babylonian and Egyptian proce-
dure was, but it can be explained without reference to antiempirical
philosophical movements. Moreover, Euclid’s reasoning is logically
correct, but even so, Mueller adduces evidence that the geometer
did not know (or at least use) the formal logic of his time. Thus
transformations of Euclid’s arguments into modern logic are mis-
leading. Measured by standards of contemporary mathematical
logic the intuitive Euclidean arguments are not conclusive. But to
infer that they are wrong is to make the unjustified generalization
that intuition is always inconclusive in mathematics. Referring to
Wittgenstein’s initial statement in Remarks on the Foundations of
Mathematics, Mueller reminds us that ‘conclusiveness’ can be de-

19. Ian Mueller, “Euclid’s Elements and the Axiomatic Method,” British
Journal for the Philosophy of Science 20 (1969) 289-309.
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fined in terms of mathematical practices as well as in terms of a
mathematical ideal.

Other critics also raise doubts about the Eleatic origin of the
Euclidean axiomatic method. Possibly Greek mathematicians rec-
ognized a valid pattern of reasoning before the philosophers cer-
tified it as such. But this objection assumes a separation of mathema-
tics and the philosophy of nature not present in the Pythagoreans
and Eleatics who were taken up with the mathematical solution of
cosmological problems.2°

A clearcut resolution probably cannot be had, but Szabo has
provided insightful hypotheses to explain events of which we have
no direct witnesses.

Let us move on to see the development and influence of the
Euclidean problem of parallels which was, as remarked, definitively
settled by nineteenth century geometers, following on Arabic and
Latin attempts to resolve the problem.

An interesting part of this history involves a trio of Jesuits: Christ-
opher Calvius (1539-1612), Gerolamo Saccheri (1667-1733), and
Roger Boscovich (1711-1787). Clavius, professor of mathematics at
the Roman College of the Society of Jesus, published a Latin version
of the Elements whose first edition appeared in 1574. It was not a
translation, but rather a reworking of Euclid’s proofs. Along with a
treasury of notes gotten from earlier editors and commentators
there are (metamathematical) studies of Euclid’s forms of proof.
Clavius approached the parallel problem understanding parallels as
equidistant straight lines, though he recognized the need to justify
that the locus of a set of points equidistant from a given straight line
isitself a straight line. His attempt at proof failed, and we know now
that such a proof either demands Euclid’s Fifth Postulate or some
equivalent of it.2!

Clavius was also the author of influential text books in algebra and

geometry. René Descartes reflects his use of them as a student at the
Jesuit College of LaFléche. These texts were studied by Saccheri too,
whose attempt to prove the Fifth Postulate in his treatise Euclid Freed
of Every Stain was, unintentionally, the modern prelude to noneuc-
lidean geometry.22
20. For comments of W. C. Kneale, L. Kalmar, A. Robinson, et al., see
Problems in the Philosophy of Mathematics, p. 9-20, cited in note 16.
21. There is no full length study of Clavius as mathematician, but Heath,
in The Thirteen Books of Euclid’s Elements, provides evaluation and excerpts
from Clavius’s presentation of Euclid. See also Joseph MacDonnell, ““Jesuit
Mathematicians Before the Suppression,” Archivum Historicum Societatis
Iesu XLV (1976) 139-147.

22. A text and translation have been provided by George Bruce Halsted,
Girolamo Saccheri’s Euclides Vindicatus (Chicago, Open Court Press. 1920).
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A mathematics professor at the Jesuit College of Pavia, Saccheri
was also a student of logic, philosophy, and theology. His profound
and pioneering 1697 study Logica Demonstrativa treats complex de-
finitions (ones which presuppose the existence of an entity satisfy-
ing conditions whose compatibility has not been proved). These
observations seem motivated by attempts such as Clavius made to
replace the Fifth Postulate by understanding parallels as equidistant
straight lines. Saccheri insists that before such a definition can be
used, one must prove that the geometric locus of points equidistant
from a straight line is itself a straight line. Anticipating the distinc-
tion made in 1843 by J. S. Mill in his System of Logic between real and
nominal definitions, Saccheri develops the notions of definitio realis
and definitio nominalis. The latter explains the meaning to be given
to a term, the former both declares the meaning of a term and
affirms the existence of the thing defined (or, in geometry, the
possibility of its construction). Such definitions are ordinarily
obtained as the result of a sequence of demonstrations. Saccheri
illustrates this with Euclid’s construction of a square in Elements I,
46. For although Euclid defines a square at the beginning of Book
One, he never presumes in his argumentations the existence of a
square as defined until he has constructed one without the
assumption of its existence.?3

Saccheri tried to use a reductio ad absurdum proof to establish the
parallel postulate. Although he necessarily failed to carry his argu-
ment to the conclusion he wanted, still he derived a sequence of
theorems now recognized to be the initial propositions of a consis-
tent noneuclidean geometry. Saccheri seems to have been so intent
on establishing that Euclid’s was the only logically acceptable
geometry that he failed to recognize what he had actually come
upon. He tried to derive a contradiction where none could be found
and lost the opportunity to become the modern discoverer of
noneuclidean geometry. His research was published in the year of
his death 1733, and very largely dropped from sight. Only by chance
was the book rediscovered in the nineteenth century by the geome-
ter Eugenio Beltrami who recognized its significance.232

The Dalmatian Roger Boscovich was a later successor of Clavius to

Saccheri’s works are listed in Sommervogel, Bibliotheque de la Compagnie de
Jesus, 1896, vol. 7, p. 360. Additional bibliographical material is found in
the doctoral dissertation of Arnold F. Emch in the Harvard College
Library.

23. Emch published an extensive analysis of the text in “The Logica
Demonstrativa of Girolamo Saccheri,”” Scripta Mathematica 3 (1932) 51-60,
143-152, 221-233.

23a. Cf. L. Allegri, “Book Il of Girolamo Saccheri’s Euclides ab omni naevo
vindicatus,” Actes du dixieme congres international d’Histoire des Sciences
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the chair of mathematics in the Roman College, and to Saccheri at
the College of Pavia.24 But the extent to which he was familiar with
their work on the Euclidean problem is not clear. Even if he treated
foundational problems of geometry only in passing, still there are
suggestions in his papers that unlike Clavius or Saccheri he posi-
tively discerned the possibility of anoneuclidean geometry, and]. F.
Scott cites passages indicating that Boscovich had an attitude not far
removed from the later noneuclidean geometers.2® The Boscovich
archives at Berkeley may well provide documents clarifying his
views.26

The many efforts to resolve the problem of parallels came upon
success through the simultaneous but independent work of Gauss
(1777-1855), Lobachevskii (1793-1856) and Janos Bolyai
(1802-1860).27 Gauss, however, did not publish his conclusions.
Lobachevskii announced his results in 1826 at Kazan University and
published them in the Kazan Messenger for 1829. He dared to present
a geometry with a postulate contradicting the parallel postulate but
exhibiting no inherent logical contradiction, and explored the con-
sequences in three treatises produced from 1835 to 1855. Janos
Bolyai, following the research of his father, reached the same con-
clusions in 1829 as Lobachevskii had, publishing them in 1832 as
an appendix to his father’s treatise on the topic. But after an 1840
German translation of Lobachevskii’'s results, the temperamental
Janos Bolyai stopped his own publications, leaving the field to
Lobachevskii and his followers.

Subsequent geometers slowly became aware of these develop-
ments along with the problems posed for mathematics and for
philosophy. How were Euclidean and noneuclidean geometries
related, if at all? A startling conclusion soon emerged. An
ingenious construction showed that if the postulates of
Lobachevskii’s noneuclidean geometry led logically to contradic-
tory theorems, then so did the postulates of Euclidean geometry.
(1962) vol. 2, p. 663-665 (published 1964). Ms. Allegri lists citations of
Saccheri’s discussion of Euclid’s treatment of proportions to give a key for
estimating the dispersal of Saccheri’s book. See also Emch, loc. cit., p. 52.
24. A biography and technical surveys are given in Roger Joseph Boscovich,
S.J., F.R.S., 1711-1787. Studies of his life and work on the 250th anniversary
of his birth. Edited by Lancelot Law Whyte. (London: Allen and Unwin,
1961).

25. l%]l'd. pp. 187-190.

26. A description of the sizable collection of Boscovich papers purchased
by the University of California is given by Roger Hahn, ““The Boscovich
Archives at Berkeley,” Isis 56 (1965) 70-78. The Library of the American
Philosophical Society in Philadelphia has microfilm copies of this collection.

27. A still useful reference is R. Bonola, Non Euclidean Geometry (New
York, Dover reprint of 1912 edition. H. S. Carslaw, tr).
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Had Saccheri succeeded in proving the inconsistency of hyperbolic
geometry he would have destroyed Euclidean geometry. In short,
Euclidean and hyperbolic noneuclidean geometry stand and fall
together. Even more, because Euclidean geometry can be reduced
to algebraic formulations by the techniques of Descartes’ analytical
geometry, the consistency of Euclidean geometry became equival-
ent to that of algebra, and ultimately to that of arithmetic. Was it
then possible to prove that the postulates and theorems of
arithmetic as formalized by Peano (1858-1932), for example, were
contradiction-free? Significant efforts were made to resolve the
problem, as well as to resolve the philosophical problem of
determining the relationship of mathematics to physical reality.
Geometry began as a study of physical reality; now antithetic
geometries were available and would soon be applied to describe
the one physical reality. But if the question of Euclid and/or
Lobachevskii challenged the mathematicians, the challenge was
not limited to them.

For the nineteenth century development of noneuclidean
geometry precipitated a philosophical crisis especially for Kan-
tians. One reason why Kant developed critical philosophy was his
interest in providing a secure philosophical foundation for the
universal and necessary character of the Newtonian laws of nature.
Now Newton’s physics was expressed and developed in terms of
Euclidean geometry. Indeed, in the era of Newton and Kant pure
and applied mathematics were not distinguished, nor were
mathematics and physics separated.

A common understanding is that Kant tried to explain and
ground the transcendental character of the laws of physics by
requiring that all experiences be perceived under the a priori space
form of sensibility. This space form is a Euclidean mold. So if our
conception of space, as it is developed in geometry and physics, is
had from our sensible intuition of space, it follows that our
conception of space is necessarily that of Euclidean space. How
then does the Kantian philosopher come to grips with mathemati-
cally acceptable geometries which are not Euclidean? Do these
undermine the Kantian structure of a priori forms of sensibility?

Many mathematicians and philosophers have thought so. The
distinguished Dutch mathematician and philosopher of mathema-
tics L. E. J. Brouwer (1882-1966) admitted that the most serious
blow to the Kantian system was the development of Lobachevs-
kian and Riemannian geometries.2® The logical positivist Hans

28. L. E. ]J. Brouwer, “Intuition and Formalism,”” Bulletin of the American
Mathematical Society 20 (1913/4) 85.
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Reichenbach (1891-1953) argued that the different geometries that
physicists after Einstein employ in their discussion of the universe
cannot be satisfactorily reduced to Euclidean geometry. Hence
Kant's assertion of a Euclidean world of phenomena is
untenable.?? Similar argumentation is developed by another
Vienna Circle mathematician and critic, Hans Hahn. Experiment,
not a priori necessity, tells which geometry (or geometries, in a
physically nonhomogeneous universe) can best describe the
physical world.

Contemporary Kantian scholars nevertheless insist that careful
reading of Kant's 1787 Critiqgue of Pure Reason will show
noneuclidean geometry not necessarily precluded. Professor L. W.
Miller of New Orleans has argued that quite generally in
appraising Kant’s philosophy of mathematics we must include the
Analytic-Discipline account which supplements and corrects the
Aesthetic account.3° In particular, though the Aesthetic account of
geometry now seems untenable, the Analytic account of mathema-
tics as the science of construction of concepts in pure intuition is
not undermined by the discovery of noneuclidean geometries
insofar as these constructions may be Euclidean or noneuclidean
and still be applicable to experience. Norman Kemp Smith had
criticized Kant’s theory of space as defective judged in the light of
later geometrical developments because of his isolation of the a
priori of sensibility from the a priori of understanding. Miller claims
that for Kant this isolation was only provisional:

If determined space is independent of the understanding then it
limits the understanding by its determination and alternative
geometries seem impossible, but if as in the Analytic account
this determination is due to the understanding then alternative
geometries are possible.3!

Relying on Kant’s remarks in #38 of the Prolegomena to Any
Future Metaphysics that space determination is due to the
understanding, Miller concludes that in the Analytic account Kant
does allow for the possibility of both Euclidean and
noneuclidean geometries. His paper ends with a thesis that
contemporary mathematical research (and the theory based on it)
supports rather than overturns the full Kantian doctrine.
Mathematics as practised (discovery) and mathematics as theoreti-

29. Hans Reichenbach, The Rise of Scientific Philosophy (University of
California, Los Angeles. 1951). Chapter 8, “The nature of geometry”).

30. Larry W. Miller, “Kant’s Philosophy of Mathematics,” Kant Studien 66
(1974/5) 297-308.

31. ibid., p. 301.
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cal deductive scheme (demonstration of proof) apparently fit the
Kantian distinction between mathematical judgments and
mathematical propositions.

Miller’s analysis complements that of Professor Stephen Korner
who had addressed two related difficulties.32

First, after observing that for Kant pure mathematics is synthetic
a priori since it is about space and time, Korner remarks that Kant
will not allow that a full description of the structure of space and
time requires mere passive contemplation. Rather it presupposes
the activity of construction. “To construct a concept” in Kantian
philosophy is to go beyond presupposing or recording its
definition. It is to provide it with an a priori object. In Kant’s words:
“To construct a concept means to exhibit a priori the perception
which corresponds to the concept.” But this does not mean to
postulate objects for it as a contemporary mathematician might
postulate the existence of a fifteen dimensional cube. We can,
however, construct a three dimensional cube. The construction is
possible not only because ““three dimension cube” is a consistent
concept but also because perceptual space is what it is. The
construction is not a physical one, of course, but a physical
construction is based on the possibility of an a priori one.

Korner calls our attention to Kant’s distinction in the Introduc-
tion to the second edition (1787) of the Critiqgue of Pure Reason
between the thought of a mathematical concept requiring only
internal consistency and its construction which demands that
perceptual space have a certain structure. Thus Kant does not
necessarily deny the possibility of self-consistent noneuclidean
geometries.

There is however a more difficult second problem posed by the
use of four dimensional Euclidean or noneuclidean geometry in
special and general relativity theories. Korner allows that Kant was
mistaken in assuming that perceptual space is described by three
dimensional Euclidean geometry, but proceeds to argue that it is
described by neither Euclidean nor by noneuclidean geometry.

Korner in fact argues that pure mathematics is disconnected
from perception and that in mathematicizing perceptual concepts,
statements, and theories, we so modify the perceptual concepts
that they cease to be perceptual. The modification or idealization is
essentially a ‘disconnection’ from perception. As for applied
mathematics, Kérner holds that the ‘application’ to perception of
pure mathematics consists in a regulated activity involving the

32. S. Korner, The Philosophy of Mathematics (Hutchison University
Library, London. 1960), p. 28 ff.
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replacement of empirical concepts and propositions by mathemati-
cal ones, the deduction of consequences from the mathematical
premises thus provided, and the replacement of some of the
deduced mathematical propositions by empirical ones.3?

Korner’s essay is representative of the regenerated interest in the
philosophical problem of the nature of mathematics and of its
relation to physical reality following the realization that neither the
Kantian scheme nor the older Aristotelean explanation in terms of
abstraction seemed capable of dealing with the proliferating
geometries and their new found applications to the study of the
physical world. Two major lines of development should be noted
here.

England was the scene of sustained efforts by Alfred North
Whitehead and Bertrand Russell to reduce all mathematics through
the theory of sets or classes to an axiomatized symbolic logic. In
this they continued the work of George Boole, C. S. Peirce, and
Gottlob Frege, and their efforts culminated in the Principia
Mathematica of 1910. (Due to technical difficulties, the section
dealing with geometry and mainly the work of Whitehead, never
appeared.) Russell in particular was not only quite confident that
this approach could set mathematics on an unassailable foundation
but also remarked that:

the proof that all pure mathematics, including geometry, is
nothing but formal logic, is a fatal blow to the Kantian
philosophy . . . The whole doctrine of a priori intuitions, by
which Kant explained the possibility of pure mathematics, is
wholly inapplicable to mathematics in its present form.34

The two mathematicians presented a collection of primitive
axioms expressed symbolically which they presumed a logician
would accept as correct and on which they hoped to base the
whole of mathematics. From these axioms, using only explicitly
stated rules of inference, they move to derive other laws of logic
such as the law of the excluded middle, the law of the double
negative, and the method of proof by reductio ad absurdum. From
logic comes the theory of classes and relations which in turn
provides the foundation for a definition of cardinal (counting)
number and the rules of ordinary arithmetic. A uniform and
systematic development supplied the basic theorems of the
arithmetic and analysis of real numbers. Such was the program of
the Logicist School.

33. ibid., p. 182.
34. ““Mathematics and the Metaphysicians” (written in 1901 and reprinted
in Mysticism and Logic, Doubleday Anchor reprint of 1917 edition) p. 91.
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On the continent, David Hilbert, starting from fundamentally
Kantian presuppositions, proposed a formalist theory.35
Mathematics, or a mathematical structure, essentially consisted in
a collection of undefined symbols, of rules of combination of the
symbols into formulas, of axioms or primitive formulas linking the
undefined symbols, and of a set of transformation rules which
when applied to the axioms generated new formulas or theorems.
Though theorems derive from axions by logical transformation,
neither axioms nor theorems are principles of logic. Models,
interpretations, or realization of the structure in physical terms
might be supplied, but are not part of the mathematical structure.
Hilbert’s ideas are illustrated by the axiom system he had already
developed in 1899 to replace Euclid’s system whose structural
deficiencies became painfully obvious in the aftermath of Bolyai
and Lobachevskii.?¢ “Point,” “line,” “plane,” “on,” “between,”

. . all these are undefined terms linked by such axioms as “There
are at least three points not on the same line.” Euclidean theorems
follow from the axiom set by explicit transformational rules of
logic. We can of course visualize or interpret these geometric
statements in the usual way learned in school, but it is important to
realize that there are also other models or visualizations of these
statements. David Gans has described a model of Euclidean
geometry in which the term “straight line” appears visually as a
semiellipse in the interior of a circle.37 All the familiar Euclidean
statements about triangles, rectangles, and circles, can be
consistently visualized in this way. Initially awkward to use, Gans’
model or interpretation of the Euclidean plane has subtle
advantages for geometric study. Other models have also been
developed.

Although Hilbert allowed into mathematics Georg Cantor’s
recent (1879-1897) and controversial theory of sets, suitably
axiomatized and admitting transfinite constructions as Kantian
ideal elements, he proposed to control such a formalized structure

35. See H. B. Curry, Outlines of Formalist Philosophy of Mathematics
(Amsterdam, North Holland, 1958). Also G. Kreisel, “What have we
learnt from Hilbert’s second problem?” in Proceedings of Symposia in Pure
Mathematics, vol. 28, pt. 1 (American Mathematical Society, Providence,
Rhode Island, 1976).

36. David Hilbert, Grundlagen der Geometrie (Leipzig, Teubner. 1899)
English translation: Foundations of Geometry, 2nd edition translated from
the tenth German edition (LaSalle, I11. Open Court Press. 1971).

37. David Gans, “A circular model of the Euclidean plane,” American
Mathematical Monthly 51 (1954) 26-30. See also his “Models of projective
and euclidean spaces,” ibid. 65 (1958) 749-755.
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by a metamathematical apparatus operating outside the structure
and employing only finite procedures. In this way he hoped to
prove the consistency or freedom from consequential contradiction
of the formal system and, in particular, the consistency of the
arithmetic of real numbers which grounds classical analysis and
mathematical physics. He had also to show complete formaliza-
tion. That is, every statement provable within the formal structure
codifies a true proposition relative to the intended interpretation
(for example, of the real numbers), and every true proposition is
codified in a provable statement. Such was the program he set for
the Formalist School.

What success came to the ambitious projects of the two schools?
Technical difficulties and paradoxes in class theory forced
Whitehead and Russell to use a “‘reducibility’”” axiom. Few logicians
have found its form and content as a primitive axiom of logic
completely acceptable, though subsequent study, especially by F.
P. Ramsey, indicates that many of the objections can be muted. But
an even deeper objection was raised. What right did Whitehead
and Russell have to think that their project was valid? Granted that
they had taken previously scattered and heterogeneous mathemat-
ical material and correlated it within the ambit of their logical
system, what reason did they have for believing that all possible
theorems of mathematics would likewise fall within this ambit?
Did they have the same unexamined assumption as Euclid who
seemingly thought that all true geometric statements could be
reduced to his axiomatic starting points? In 1919 Emil Post
developed the idea of the completeness of a formal mathematical
system. Such a system is complete if it is not possible to add an
axiom independently of those already prescribed, that is, an axiom
not logically derivable from them, the undefined terms remaining
fixed. Post was also able to establish that in a certain subsection of
the Principia Mathematica any proposition seen as true under a
specified interpretation or model of its symbols could be proved
using the axioms and rules of inference which the system explicitly
provided. Post’s splendid work raised hopes that all of the Principia
Mathematica could be treated with such techniques.

Unhappily, the economic depression of the Thirties was
matched with the mathematical depression of the Logicists and
Formalists. A young Austrian, Kurt Godel (1906-1977), developing
Post’s ideas, proved two shattering theorems which still form the
cornerstone of twentieth century logic and metamathematics. In
October 1930 he presented to the Vienna Academy of Sciences an
abstract ““Some metamathematics results on completeness and
consistency”’ of his paper “On formally undecidable propositions
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of Principia Mathematica and related systems I,”” to be published in
1931.38 In a note (added in 1963) Godel discusses his results:

In consequence of later advances, in particular of the fact that
due to A. M. Turing’s work a precise and unquestionably
adequate definition of the general notion of formal system can
now be given, a completely general version of Theorems VI and
XI is now possible. That is, it can be proved rigorously that in
every consistent formal system that contains a certain amount of
finitary number theory there exist undecidable arithmetic
propositions and that, moreover, the consistency of any such
system cannot be proved in the system.

In short, by Godel's Theorem VI the Principia Mathematica is
necessarily incomplete. There will be legitimately formed arithmet-
ical propositions of the system such that neither the proposition
nor the denial of the proposition can be proved within the system.
And similarly for any axiomatic formulation of Euclidean
geometry. Could such an unprovable proposition then be added to
the system as an axiom inadvertently omitted by its formulators?
Surely, but then, as Godel’s result shows, the augmented system
would in turn allow another undecidable proposition. Even if an
infinite sequence of undecidable propositions was added at one
move to the original system, the resulting system would still be
formally incomplete.

Hilbert’s program of devising a consistency proof for a formal
arithmetic system as seen in Principia Mathematica also comes to
grief. Now it is relatively easy to show that if the Principia
Mathematica (or any formal system, for that matter) is inconsistent,
then any statement in the system can be proved. Inconsistency
implies completeness. But Godel’s Theorem XI demonstrates that
if a system as complex as the Principia Mathematica be actually
consistent, then it is not possible to produce a valid proof of this
within the system itself. He is however careful to observe that a
finitary consistency proof may be possible which cannot be
expressed in the formalism of the system. Should we formalize
such a logical apparatus to a metasystem, we are again presented
with the consistency problem for the metasystem, and the specter
of an infinite systematic regress hovers over our efforts. If we
employ the logic of ordinary discourse to establish consistency, we

38. K. Godel, “Uber formal unentscheidbare Sitze der Principia
Mathematica und verwandterSystem I,”” Monatshefte fiir Mathematik und
Physik 38 (1931) 173-198. English translation in J. van Heijenoort, Frege and
Godel. Two Fundamental Texts in Mathematical Logic (Cambridge, Harvard
University Press, 1970).
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note with A. Church that such an intuitive argument must involve
a principle incapable of being formalized within the given
system.3°

Like Heisenberg’s Uncertainty Principle in physics which puts a
limit on the amount of information to be obtained from a physical
system, Godel’s result suggests a limitation on the amount of
information to be obtained from a formal axiomatic system. His
conclusions may also be taken to suggest that the logic or ordinary
discourse needed to ground the consistency of a formalized logic
must be more than a game played with a set of symbols and
inference rules, and must somehow itself be grounded in reality.
Almost innumerable implications and questions remain. Does the
problem of limitation arise from the formalism method itself, or, if
we are mathematical Platonists, from the transcendent nature of
the mathematical objects themselves? Or are there any mathemati-
cal objects which we do not ourselves explicitly and repeatedly
construct? And if we construct mathematical objects ourselves,
how can mathematics be uniform and consistent . . .

It is not here possible to list and explore the developments in
mathematics, logic, and epistemology consequent to the Godel
theorems and the pervasive way they have changed our views of
these disciplines. But it should be possible to understand the
Incompleteness and Consistency theorems as the inevitable result
of the publication of the Elements. Mathematics and philosophy
were twin products of the miracle of Greek rationalism. The
history of their adolescence and maturity sees them still as closely
linked members of a family. Euclid wrote no less for philosophers
than for mathematicians. His Elements will remain a landmark text
in the history of western philosophy.

St. Joseph’s University
Philadelphia

39. Cited in L. O. Kattsoff, A Philosophy of Mathematics (Iowa State
University Press, Ames, 1948), p. 194. See also W. Kuyk, Complementarity
in Mathematics (Boston, D. Reidel. 1977) p. 49-55.




