

Volume 12 – Spring 2016

djim.management.dal.ca

doi: 10.5931/djim.v12.i1.6450

Librarians and Computer Programming

Librarians and Computer Programming: understanding the role of

programming within the profession of librarianship

About the Author: Domenic Rosati is a Master of Library and Information Studies

candidate (2017). He is currently involved with several digital projects and initiatives,

and works as an Archives Intern at the Dalhousie University Archives and Special

Collections. He comes from a background in history and computer science and has a

strong passion for digital collection and metadata design, discovery, and

administration. His primary research concerns are semantic discovery of heritage

resources and bibliographic information including interoperability and potential

applications of semantic web technologies within library and archive settings.

Abstract: Computer programming is increasingly being discussed as a

practice within librarianship. However, contemporary discussions about the

role of coding within librarianship often suggest that librarians should or

should not learn to code, while failing to qualify how and why librarians

are employing code in a professional capacity. By investigating case

studies that describe librarians writing code, and literature that describes

its historical emergence, this paper qualifies popular discussions of code

and librarianship with how and why programming is being used in practice

by librarians. These case studies reveal that librarians are writing code for

data processing and web services as an extension of their normal

responsibilities. This article discusses concerns surrounding the scalability

and security of librarians who code professionally, as well as concerns

about librarians developing inefficient and insecure software. This article

concludes that discussion of the practice of software engineering within

librarianship is more useful than arguments over whether librarians should

learn to code.

Librarians and Computer Programming

Introduction

Increasing attention is being paid to computer programming as an activity within

librarianship. Contemporary job postings for librarians are including programming

knowledge as a qualification (McGlone, 2013). Communities, such as Code4Lib and its

accompanying conference and journal, have grown to support librarians engaging in

this kind of work. Sparked by claims that ‘all librarians or library students should learn to

code,’ or ‘coding is a fundamental literacy,’ contemporary discussions about the role

of code within librarianship are growing. However, these discussions often advocate

learning computer programming with very little qualification about how this skill is

being applied in libraries by librarians. Librarians, library administrators, and library

students looking to understand the reasons for coding in librarianship are often met

with answers that do not address the historical and societal reasons for why librarians,

rather than professional programmers, are taking on this work. These answers also fail

to address the practical realities of coding as it is employed professionally by librarians.

As a response, this paper will present the major topics raised in popular discussions of

coding in librarianship, which are often framed around the question ‘should librarians

learn to code,’ and will supplement them first by investigating the historical reasons

that librarians began programming, as found in librarianship literature, and second by

analyzing the realities of librarians who engage in computer programming by looking

at case studies. This investigation found three primary reasons why librarians are

responsible for programming as part of their jobs: technological changes, such as the

emergence of dynamic web applications; the volume of data that librarians need to

process, transform, and migrate; and the lack of IT staff, support, resources, and time.

Despite an increased responsibility for librarians to develop programming solutions, a

key finding in these case studies is that most programming projects are not instances

of librarians taking on traditional IT work. Instead, the following discussion will illustrate

how programming solutions should be thought of as extensions of the services and

work that already fall within the scope of librarianship. In addition, the case studies

reveal that the term “programming” within librarianship is used to signify varying levels

of proficiency, from knowing how to find and run a script to writing a comprehensive

web service or software solution. Finally, the case studies attribute success in coding

projects as the ability to identify when programming is an appropriate library solution,

and the ability to plan that solution’s implementation in a sustainable way, rather than

attributing success to technical proficiency with programming languages.

The issues found in the case studies are often not concerned with programming

proficiency or learning code but instead of how to design solutions that are efficient,

Dalhousie Journal of Interdisciplinary Management – Volume 11 – Spring 2015 3

secure, maintainable, and that can operate on different scales of use. These concerns

are traditionally addressed by software engineering. Yet, very few case studies directly

discuss these software engineering practices. In light of these issues, this paper

contends that discussions of ‘should librarians learn software engineering’ are more

useful than ‘should librarians learn code,’ which neglects the more pressing issues and

realities that are faced by librarians professionally involved with coding. In this article,

software engineering is defined as the competency of ensuring maintainable, secure,

and sustainable web and software applications through testing, documentation, code

style, design, and other best practices. Coding or programming refers to working with

programming languages that can handle variables, conditional statements, and

looping, such as Python, PHP, and JavaScript. It does not refer to markup, styling, or

query languages.

Why Librarians Should Learn Code

A variety of topics are raised in the popular discussions of coding in librarianship. While

these discussions have existed at least since 1977, this paper will focus on

conversations from the year 2000 onwards, that are representative of a specific and

current set of topics. Authors often claim that coding is a useful skill for librarians or

library students, but often provide little or no follow through on how those groups might

apply coding in a professional context. Several authors justify their advocacy of

librarians learning code with the argument that coding is a basic and fundamental

literacy and skill (Wisniewski, 2012). This argument is related to the ‘Code Year’

phenomena in 2012 that saw people, including prominent figures such as New York’s

mayor Michael Bloomberg commit to learning code through a weekly JavaScript

lesson provided by Code Academy. Librarians began the American Library

Association's (ALA) Library Code Year Interest Group as a commitment to this ‘Code

Year’ program. Part of the premise of the ‘Code Year’ is that learning to code is good

because coding is a fundamental literacy alongside reading, writing, and arithmetic,

and it teaches fundamental skills not acquired elsewhere (Wisniewski, 2012). This is

carried over in the overall aims of the ALA Code Year initiatives that sought to support

librarians who wanted to learn the fundamentals of programming using the Code Year

framework. While coding as a fundamental literacy might explain why coding is

beneficial for the individual, it does not explain how coding would look within

librarianship.

The problem with the above example is that it frames learning code as a voluntary skill

that adds potential value to a librarian’s work, without explaining why coding may be

a necessity in librarians’ roles. Another example of this is the blog post “Should

Librarians and Computer Programming

librarians learn to code?” by Laurie Putnam (2013). She argues that the question is

virtually the same as ‘should profession X learn to code”, because to her, this is a

choice of the individual professional and their interest in coding. She does offer some

examples of when a librarian might employ code, such as to build a library app, but

she does not offer insight into what is unique to the profession of librarianship that

might require coding skills, and why coding might be part of a librarian’s job

description.

Another topic brought up in these discussions is that by employing code and

developing applications, librarians can add value to their library’s services. As Kim

(2012) mentions, “computer-programming skills can also make it possible to create

and provide a completely new type of service that didn’t exist before” (para. 1). In a

similar vein, Yelton (2012) explains that one of the reasons that librarians should learn

code is empowerment and creativity. While creating value-added services is certainly

a useful and empowering thing librarians could do as part of their service, this

discussion fails to frame programming as emerging from real needs-based innovation

and continues to portray programming as the voluntary application of on-the-side

skills.

Often, communication is cited as a key reason why librarians should learn to code

(see Kim, 2012; and Yelton, 2012). For Yelton (2012), one of the reasons librarians should

learn to program is because “[l]ibraries need to work well with IT and get good service

from software vendors” (p. 5). She continues by saying that learning to code will help

librarians have the insight into what is possible with coding, how long a project might

take, and how to ask for what you need from the developer. Here, it is thought that

better collaboration with IT, or relationships with vendors, are made through librarians

learning IT’s language. Additionally, Yelton (2013) mentions that librarians should learn

to code in order to communicate with other librarians who are engaging with coding.

Yelton (2013) says that coding is a social process, and librarians shouldered with

coding responsibilities would benefit from a colleague who understands their work.

The discussions that support librarians’ learning of code also include more practical

reasons offered for learning to code, and these are tied to the professional work of

librarians. One author mentions that data processing and migration can be

automated with programming, which improves the workflow of librarians (McElfresh,

2012). Another author remarks that customizing and maintaining websites and library

applications can be an important part of a librarian’s job (Kim, 2012). With

programming, the librarian can improve the user experience of these websites and

applications (Yelton, 2012). Central to many of these conversations is that librarians are

Dalhousie Journal of Interdisciplinary Management – Volume 11 – Spring 2015 5

not receiving institutional and professional support for the programming work they do

or that they wish to do (Yelton, 2015). For the purposes of the discussion below, it is

important to note that the writings mentioned in this paragraph fail to mention why

librarians might be required to implement custom web services or data processing

automation. They also fail to mention why these services would be the responsibility of

librarians, rather than IT staff or vendors.

Why Librarians Shouldn’t Learn Code

Not all people involved in these discussions agree that programming should play a role

within librarianship. Reflecting on some of the topics outlined above, Bivens-Tatum

(2013) tells of his early experiences learning HTML in library school, with the

consideration that he would be applying his knowledge professionally. He found that

he never used his knowledge of HTML beyond little modifications to things that he

produced in a content management system (CMS). He argues that this example can

be applied to librarians wanting to learn code today. He admits that librarians of a

technical nature could apply programming to create innovative solutions and

services. However, he argues that programming should be entirely optional and that

good librarians without technical backgrounds are able to find solutions, or provide

similar services, without knowledge of programming (Bivens-Tatum, 2013). Bivens-Tatum

(2013) argues that if coding within librarianship is framed as voluntary or value-added,

you cannot assert that coding plays, or would play, an essential role within

librarianship.

Other writers argue that programming is a potentially dangerous thing for librarians to

be involved in. Murray (2012) brings up the potential security implications when

librarians are involved in coding. He tells us that when writing code that deals with web

services, there are several potential security vulnerabilities and weaknesses that a

programmer could open his or her server and data to. He writes of an example where

a WordPress website was compromised through its use of custom plugins, and explains

that programmers always have to be weary of “code vulnerabilities and attack

points” (Murray, 2012, p. 5). Kelley (2015) argues that with only a little knowledge of

SQL or Unix commands, common tools which librarians would need to use to deploy

their code, a librarian could easily destroy entire library systems. Kelley’s (2015) main

argument, though, is that librarians who write code would be bad software engineers

because, without the deep knowledge of an IT professional, librarians would write

“badly engineered and badly tested code” (p.13), which would require significant

resources devoted to software up-keep. Some commenters on Kim’s (2011) blog react

to Kim’s advocacy for librarians learning code with similar sentiments. Commenters

Librarians and Computer Programming

argue that treating programming as something one can just pick up and do devalues

the work and education of professional programmers. The commenters want librarians

to be aware that formal software and web development would demand a certain

amount of maintenance and consideration of long-term responsibility. As one

commenter puts it, “who would fix [the software or the website] if it’s broken? who

would fix [it] if it’s broken and the said librarian is away for a conference? who would

maintain [it] if the said librarian leave[s]?” (Ranti, 2011)

Those critical of librarians coding argue that it is an unfair and unintelligent staffing

practice within libraries. Some of these discussions can be found as comments on

Kim’s (2011) blog post that poses the question of whether librarians are uniquely

situated to understand library systems and user requirements. One commenter

explains that it devalues the IT professional to say they would not understand the

requirements of libraries and library users, because understanding user requirements is

part of all good software engineering education and practice (An IT Person, 2011).

Another commenter repeats a common sentiment: professional programmers have

gone through extensive training that make them competent in their programming

abilities (Computer Engineer & Librarian, 2011). To ask librarians to competently

perform on the same level as IT professionals without the same training is not an

intelligent staffing choice (Will K, 2011). The above statements are related to another

argument that libraries tend to require or favour ALA accredited degrees for their

programming hires. Commenters note that this is an unfair practice which favours less

competent people because of the notion that they can understand libraries better;

one commenter likens the practice to requiring the library’s lawyers to all have ALA

accredited library degrees (Will K, 2011).

Should Librarians Learn Code?

In response to these conversations, Wilkinson (2013) introduces a conceptual schema

with which we can understand the positions taken on whether or not librarians should

learn code. He says that within the conversation there is strong essentialism, which

states that all librarians should learn to code, and weak essentialism, which states that

all libraries need someone to code. The strong essential approach encompasses those

discussions which advocate all librarians learning code due to the topics illustrated

above. In addition to these, Wilkinson (2013) identifies two arguments within strong

essentialism. The maintenance argument states that librarians need to code in order to

maintain library systems and applications, and the forward thinking argument states

that librarians need to be able to code in order to innovate and provide cutting edge

services.

Dalhousie Journal of Interdisciplinary Management – Volume 11 – Spring 2015 7

Wilkinson (2013) explains that the weak essential approach, which states all libraries

need somebody to code, actually applies to any discussion on whether a particular

skill in librarianship is essential (Wilkinson, 2013). Reframing the argument so that

programming is an essential skill within the library, but not necessarily for all librarians, is

a useful way of approaching programming in librarianship. By reframing the argument

in this way, it puts running the library as the starting point to discussing the why and

how of programming in libraries. However, since only all libraries and not all librarians

need programming, the argument leaves open the possibility that libraries could just

as well hire and employ only IT professionals for programming. Both the strong and

weak essential approach fail to explain the nature of programming within librarianship

because they do not provide an explanation for why librarians would be hired, tasked,

and responsible for programming, instead of an IT professional.

In librarianship competency and job positing analysis literature, scholars have

produced a large body of literature on competencies within librarianship. However,

these scholars have not produced concrete evidence of what the competencies of

programming mean or look like (see Raju, 2014 for an analysis of digital competencies

literature). Additionally, these scholars have a tendency to celebrate programming

languages in librarianship without qualifying how and why those programming

languages will be employed (Choi & Rasmussen, 2006). In an analysis of frequencies of

coding languages within librarianship, Maceli (2015) found that JavaScript and PHP

were the top programming languages included in job posts for developers and

librarians on Code4Lib’s job posting site. However, this analysis tells us very little about

how these languages will be used by librarians, or what would be expected from the

successful candidate, other than that the projects will be web based. These

languages can be used for simply modifying or integrating services, or for developing

whole web applications.

Historical Origins of Librarians in Code

Previous arguments, discussions, and frameworks lack the explanative power to

identify why librarians are required to learn code and are fulfilling certain

programming functions within libraries. The following historical discussion aims to

answer the whys of coding in librarianship. The earliest of these discussions can be

found in librarians’ hands-on involvement in automation. Before the development of

web services in the late 1990s, the majority of programming work in libraries was

devoted to library systems such as the electronic catalogue (Rhyno, 2003). Rhyno

(2003) notes that instances of librarians’ involvement with programming were usually

related to managing in-house developments, as opposed to working with vendor

Librarians and Computer Programming

solutions. Vendors advocated that librarians should stay out of programming and that

better relationships with the vendor should be developed instead (Rosenberg, 1987).

However, since library systems were more difficult to customize, Rhyno (2003) notes

that librarians with IT responsibilities were not programmers but translators between the

vendor, IT, and library administration. Davis (1977) noted that computer programming

in librarianship in the 1970s was about communication with programming and

automation professionals who were being employed to provide automation solutions

in the library. The motivation for librarians learning to code was to provide some

measure of independence from IT and vendors (Davis, 1977). Like the authors of

contemporary popular discussions, Davis (1977) also noted the potential for creative

programming work or the empowerment of librarians to fix systems themselves as

value-added benefits of learning programming.

Library Hi Tech Volume 21, Issue 3, (2003) features several articles about the historical

emergence of the systems librarian. In one of these articles, Rhyno (2003) tells us that

the genesis of programming within librarianship really lies in the common gateway

interface (CGI) protocol that allowed applications and databases to be connected

to websites dynamically. Librarians could now use CGI scripting languages such as

Perl, known as the ‘Swiss army knife’ of scripting within librarianship, and later PHP, to

integrate various library applications, databases, and content into the web.

Integrating, creating, or maintaining applications and databases with scripting was

much easier and maintainable than customizing larger self-contained library systems,

which required the use of lower level languages and programming concepts such as

threading and memory handling. Some of the early coding projects which librarians

worked on were the first public web integrations (as online public access catalogues,

or OPACs) with the library’s integrated library systems (ILS) (Rhyno, 2003). Scripting and

web languages allowed librarians to take control and provide web services that they

would have had to wait for vendors or in-house staff to implement. While systems

librarianship had existed since the genesis of library systems and automation, the

responsibilities of systems librarians now began to encompass more direct

programming roles. As more and more services and systems utilized or allowed these

scripting languages and dynamic web services, systems librarians began to also be

more involved in the maintenance and implementation of IT solutions.

Kelley (2015) provides a more critical perspective on the origins of the system librarian,

particularly as the role relates to programming. He argues that the origin of systems

librarianship is actually due to IT staff shortages, or hiring librarians where programmers

should have been employed. As a result, Kelley (2015) says that systems librarians

should be thought of as IT imposters lacking the depth and knowledge which would

Dalhousie Journal of Interdisciplinary Management – Volume 11 – Spring 2015 9

belong to professional programmers. He suggests that librarians involved with

programming should make room for more IT professionals in libraries and relegate their

work to communication or project management roles. While others have confirmed

that staff shortages do contribute to librarians’ involvement in programming (see

Watson, Hawthorne & Wishnetsky, 2008; Randtke, 2013), not all authors see the role of

the systems librarian as detrimental. In his article from Volume 21, Issue 3, of Library Hi

Tech, Goddard (2003) argues that while systems librarians may lack programming skills,

they add communication, project management, and instruction or training skills to

library systems and programming projects.

In addition to the systems librarian, the emergence of the web services librarian also

tells of how librarians began to be involved in, and responsible for, programming.

Roberts (2005) tells us that instances of librarians involved in programming usually arose

from wanting to connect a database or collection to a front end website as an online

service. As in the case of systems librarians, server-side scripting was seen as a new

window into creating library web services (Nackerud, 1998). As dynamic web

applications and services that included scripts and connections to databases

became more common, the programming role of librarians expanded. Librarians

responsible for previously static web services using markup languages often had to be

involved with scripting and modifying existing code in order to make web services

more accessible and debug errors in website behaviour (Marchant, 1999). With the

increasing popularity of using the web as a platform for delivering services, librarians

were tasked with more responsibilities for web services, and needed to use code to

fulfill their emerging role (Tidal, 2012). With CMSs and application programming

interfaces (APIs), dynamic web services became more powerful and easier to use,

with the possibility that web services could be developed with much less programming

knowledge. However, integrating, customizing, and implementing new web services,

such as implementing services into the OPAC, still requires programming knowledge in

most cases (see McMullen & Gray, 2012).

While job postings for the emerging role of the digital librarian, as steward of digital

collections and data, often list programming knowledge as a requirement for this

position, a unique role as it relates to programming is rarely described. Instead, cases

of digital projects librarians programming are cases of web projects involving data

processing, migration, and automation. The latter type of programming is even more

common in the role of the metadata librarian. One metadata librarian explained that

part of the professional transformation from cataloguing librarian to metadata librarian

could be characterized by the use programming languages for automation and

metadata processing (Schwartz, 2010). With the high volume of metadata produced,

Librarians and Computer Programming

or needing to be transformed and re-fitted, Finch (2013) argues that data

transformation and migration is the most important work of metadata librarians, and

this work must be automated with programming. Intner and Lazinger (2010) explain

that this is the reason why entry-level cataloguers are being asked to have knowledge

of programming languages.

Case studies

In order to further supplement discussion of the how and why of librarians

programming, the following case studies will present several instances found in

librarianship literature where librarians were actively writing their own code and solving

problems in the two areas discussed above: data processing and web services. One

of the most common instances where librarians developed programming solutions was

for data processing. These data processing tasks include the migration, transformation,

ingestion, and extraction of data. Each of these cases identifies programming as a

solution because of the need for large amount of records to be processed within a

manageable workflow. In these cases, authors mention that batch processing tools

such as MarcEdit and Open Refine could be employed as lesser alternatives to

programming (Frank, 2013). Others mention that programming is an optional but

beneficial solution needed for effective workflow (Godfrey & Kenyon, 2015). Still more

explain that many data processing solutions have not yet been developed, or certain

applications, services, and library systems require programming in order to perform

data processing and migration tasks (Rimkus & Hess, 2014). The scope of programming

solutions developed includes developing scripts for remediating metadata (Rimkus &

Hess, 2014), ingesting metadata and records into software with various constraints

(Abraham, Chapman, Flecker, Kreigsman, Marinus, McGath & Wendler, 2005), and

automating metadata creation and updating (Randtke, 2013). These initiatives

confirm the conditions described above about the historical emergence of

programming within metadata librarianship, which shows that working with metadata

has required librarians to write code.

Several of the above case studies deal with migration and transformation of MARC

records. They illustrate the why and how of cataloguers employing code. In general,

there are two reasons brought up in these case studies about cataloguers

programming: 1) programmers do not understand MARC records well enough to

provide adequate solutions for librarians; and 2) scripting enables staff to have a more

manageable MARC record workflow. Thomale (2010) argues that programmers have

a hard time understanding the subtleties of MARC and writing programs that can

adequately interpret MARC records. Frank (2013) notes that not only should

Dalhousie Journal of Interdisciplinary Management – Volume 11 – Spring 2015 11

cataloguers learn code to communicate better with programmers to develop

solutions for MARC records, but cataloguers need to learn to code their own solutions

for processing MARC records. Frank’s article goes on to describe how he employed

Python scripting, in conjunction with other MARC processing tools, in order to fix MARC

records as they were exported by Archives Toolkit, which would otherwise have had to

be fixed by hand.

Another two articles document the creation of Perl scripts for processing and ingesting

MARC records (Highsmith, Jordan, Llona, Murray & Summers, 2002; Surratt & Hill, 2004).

These cases illustrate the formal collaboration between IT professionals and librarians

to develop a maintainable library solution to simplify working with MARC records. For

Highsmith et al. (2002), their script library was developed for librarians by librarians in

order to batch migrate or modify MARC, as is shown in various case studies found in

the article. Surratt and Hill (2004) are a librarian and developer team who worked on a

script to solve the cumbersome workflow of creating MARC records from electronic

theses & dissertations (ETDs). Surrat and Hill (2004) addressed the issues of programmers

not understanding MARC as their article describes a workflow where the librarian was

responsible for programming the part of the script related to metadata, and the

developer was responsible for the rest.

The other major area in which librarians were found programming in these case studies

was in the development of web services. In addition to the power that server-side

scripting gave librarians over developing better web services (as discussed above),

two other areas can be found in which librarians were programming web services:

integrating and using APIs, and developing client-side services using front-end

programming languages such as JavaScript. In contrast to the automation scripts

employed for data processing explored above, these projects included a wider range

of what was being developed, at what level, and why. McMullen and Gray (2012)

mention that the most common web services involved in programming projects are

the integration of services with the OPAC. They mention that librarians responsible for

managing OPACs have now become responsible for integrating services into or from

the OPACs through programming. For their project, the librarians McMullen and Gray

(2012) considered the cumbersome workflow for keeping faculty up to date on the

acquisitions they requested. After identifying the problem, they describe the library

widget they developed that displayed departmental book acquisitions in real time.

They discuss their use of PHP and JavaScript to retrieve data from the library OPAC

and display it on a website. Other projects mention developing Chrome extensions

(Schulkins & Schulkins, 2015), implementing APIs that require modifying scripts for local

use (Neugebauer, Carson & Krujelskis, 2015), and adding various services to library web

Librarians and Computer Programming

pages using Perl (Bartle, 2000), ASP.Net languages (Greene, 2008), and the JavaScript

library JQuery (Miller-Francisco, 2010; Michel & Ladd, 2015).

Beyond the technical reasons for programming explained above, there was significant

discussion in these case studies about the professional reasons why librarians were

involved in programming. Many librarians mentioned that the necessity for them to

learn programming was prompted by shortages of staff, time, or software capabilities.

Some created their projects because there was a shortage of money to hire

professional programmers for the project (Watson, Hawthorne & Wishnetsky, 2008). For

others, librarians took on programming projects because their IT staff would not

(Randtke, 2013). Randtke (2013) explains that librarians have to be weary of the time

commitments their potential projects might require of IT staff. Randtke (2013) also

explains that IT staff may not be willing or able to support programming projects or

initiatives, as had happened in her case. McMullen and Gray (2012) mention that, in

managing a library’s web presence and applications, many web services solutions

and responsibilities that involve programming fall on librarians, not on IT staff.

Orphanides (2011) speaks to this when he says, of developing a public touchscreen

application, “[t]he task of selecting and developing content, identifying and

configuring additional hardware, and designing and implementing an interface, fell to

me, along with my colleagues Keith Morgan, Principal Librarian for Digital Media, and

Jason Walsh, Technology Support Specialist” (p. 4).

Contrary to some authors’ reluctance about librarians coding, as discussed above,

software engineering is often raised and discussed in these case studies. Belfiore (2012)

discusses the potential problems of maintaining code and code-based initiatives

when a librarian with code knowledge is replaced by one without. Many of the case

studies regarding scripts for data processing mention that while programming is a

great solution, lack of programming knowledge can become a barrier when the

scripts have to be run or modified by other staff in other situations (Rimkus & Hess, 2014;

Frank, 2013). Orphanides (2011) and others reflecting on their projects discuss the need

for better software engineering practices and well-written code in order for the project

to be sustainable in the long term. In addition, part of Chudnov, Kerchner, Sharma,

and Wrubel’s (2014) article is aimed at librarians and archivists, to explain how

sustainability works in software projects, by explaining versioning, documentation,

code repositories, and more. Despite the above concerns and issues, few of these

case studies address security, one of the main vulnerabilities that Murray (2012) worries

about. Neither do these case studies directly discuss how they dealt with efficiency

and scalability in code projects. Importantly, there were no direct discussions about

testing web and software projects.

Dalhousie Journal of Interdisciplinary Management – Volume 11 – Spring 2015 13

Discussion

How do the practical realities found in the above case studies relate to popular

discussions about librarians coding? In some of these discussions, the programming

work of a librarian was framed as voluntary. Yet, in these case studies, there were a

variety of reasons why programming was considered a necessity by librarians: the

project was their responsibility, the librarian was the only one who would be able to do

it, there was a shortage of IT professionals, the project needed the librarian’s

knowledge of metadata standards, and the librarian required programming solutions

for transforming and migrating the large amounts of data particular to their situation.

Contrary to some of the popular discussions that advocated for the hiring of

professional programmers to undertake librarians’ programming duties, these projects

made sense within the scope of the librarian’s responsibilities and, due to the relatively

low time commitment of the projects, would have been too expensive or impractical

to find IT professionals for. For web services librarians, the projects were usually

customizations or new widgets, which were extensions of what librarians might have

already been expected to be doing within a CMS or a static web page. Some of the

popular discussions tended to frame librarian programming projects as unessential to

library functions, yet all of these case studies, even the value-added ones, were

grounded in a real need for functionality, workflow, or service.

Perhaps to respond to some misgivings about librarians involved in code, many of the

case studies were actually collaborations between developers and librarians, wherein

both developers and librarians wrote code and worked on the same project. In

popular discussions about librarians and code, communication between IT and

librarians was cited as an important reason for librarians engaging in programming.

Some of the above case studies illustrated instances of communication that became

formal collaboration. Other case studies noted that their work was intended to get

librarians communicating and collaborating with programmers regarding metadata

(Frank, 2013). For McMullen and Gray (2012), the most important aspect of

communicating with IT was remaining on good terms with them while working

relatively independently from them. For Rantke (2013), the most important aspect of

communicating with IT was learning what IT did not do and did not know.

One of the significant elements noticed in these case studies is that authors mean

different things when they talk about programming. While using programming

languages and computational thinking is at the core of what they are talking about,

there is a very large range of difficulty and skill level demonstrated within these

projects. First, when authors talk about programming projects, sometimes they just

Librarians and Computer Programming

mean connecting applications together using web services, content management

systems, and APIs with almost no programming involved (Walker, 2007; Banerjee &

Johnson, 2015). In several other case studies, authors are just identifying scripts written

by others that they employed for their workflow (Zou, 2015; Neugebauer & Han, 2012).

These authors refer to scripting and scripts for data processing, but the primary focus is

placed on being able to run these scripts (Donnelly, 2014; Neugebauer & Han, 2012).

In the above two examples, librarians still need technical literacy to be able to find

and understand scripts or APIs. Their technical literacy enables them to provide a

solution, and to modify, compile, and run the script for local implementation. In other

case studies, librarians were developing their own scripts (Ogier & Aschmann, 2013) or

modifying scripts for re-use (Frank, 2013). Even beyond this, librarians are writing their

own complete web services (McMullen & Gray, 2012; Greene, 2008), or complete tools

for library solutions (Jenkins, 2009). While there were some larger projects described

(Chudnov et al, 2015), most of the programming done by librarians was below the

levels of managing large-scale library software projects or vital services, that would

traditionally be managed by library IT staff. The consideration of different levels of

programming done by librarians is important because some of the negative reactions

to librarians programming are predicated on thoughts that librarians are involved in

larger projects or more vital systems than they actually are. Here, the programming

knowledge appropriate to librarians’ projects would not require the formal education

and skills of IT professionals. These considerations have implications for library

administrators, so they can understand what they should and should not expect from

librarians, and for library students and librarians in continuing education, to understand

what levels of programming they might be asked to engage in. Finally, a grounded

understanding of the levels in which programming is employed is much more useful

than the competency and skillset literature outlined above, which struggles to explain

why and how programming might be employed professionally.

An important factor that exists implicitly in these case studies is the idea of

communicating code within the library profession. While popular discussions have

considered administrative and professional support for librarians as an important factor

in their participation in coding, those discussions have not considered how that

support is built up through networks of communicating code among librarians. What is

important about the case studies examined above is that they form a body of

literature in which programming solutions to a library problem is communicated, and

these solutions are communicated through the reading, writing, and sharing of code

for re-use. This is unique, because it requires confidence in code literacy on the part of

the reader. If the reader is able to make sense of the code, this body of literature plays

Dalhousie Journal of Interdisciplinary Management – Volume 11 – Spring 2015 15

a valuable role within librarianship, because it enables librarians to potentially employ

shared programming solutions to their library problems, even if that just means the

librarian can share the code with IT staff.

Conclusion

This discussion has qualified the debate surrounding whether librarians should learn

code by explaining how librarians are coding, as found in case studies and an

investigation into why systems, web services, digital projects, and metadata librarians

began to code. The main problem with popular discussions on coding in librarianship is

that authors do not define what coding within librarianship actually looks like or the

reasons why it would be a professional responsibility. Those discussions make

programming for librarians seem entirely optional, or suggest that programming work

can be taken over by IT staff without complications. An investigation into when

librarians first began programming has shown that changes in technology, such as the

emergence of the dynamic website and the nature of metadata, have caused new

roles for programming within librarianship. In order to have a richer understanding of

how and why librarians are coding, case studies of data processing and web services

projects where librarians employed code were presented. In the case studies,

librarians engaged in programming as extensions of their responsibilities within web

and metadata librarianship, as well as due to shortages of IT staff. These case studies

demonstrated that framing coding within librarianship as completely voluntary is

inadequate: often librarians were engaging in programming because it was their

responsibility and, even when the project is value-added, it is still rooted in a real need

to solve a library problem with a programming solution. In contrast to the concerns

over librarians engaging in IT work, librarians were not engaging in boundary crossing.

Their programming work was largely an extension of responsibilities they already had,

and the programming work they were doing was at a much simpler level and smaller

scale than what professional programmers might be involved in. Contrary to what

some commenters might have expected, the concern for the software quality of

programming projects was often addressed in these case studies. In addition, these

case studies recognized a need for better software engineering practices among

librarians. Also, Murray’s (2012) concerns over security still remained unaddressed in the

case study literature and these case studies did not discuss some of the more

technical aspects of application design such as efficiency, speed, and handling

different scales of data or users. These considerations suggest that learning code is not

the primary obstacle for librarians. Instead, the obstacle is learning and practicing

software engineering so that their coding projects are scalable, secure, and well-

maintained.

Librarians and Computer Programming

Authors meant quite a range of things when they spoke of programming, from being

able to run and modify scripts, to being able to write complex web services, which is

perhaps feeding into why some suggest coding as an easy skill to pick up, while others

suggest that programming is completely beyond the capabilities of librarians. This has

important implications for the popular discussion at large: for competency literature to

understand programming, for library administrators to understand what should and

should not be expected of librarians, and for library students and librarians to

understand the different levels of programming that might be required of them. What

is common to this body of programming literature is a unique set of writings that

communicate code solutions between librarians. The above case studies indicate that

the current challenges involved in librarians doing programming focus more on issues

related to software engineering, and less on issues surrounding code and

programming. Therefore, discussions of software engineering within librarianship rather

than arguments over whether librarians should learn to code would be more

beneficial for programming librarians. Today, librarians are involved in a great many

open source projects that are widely used as standard library applications, such as the

Islandora project, a digital repository framework initiated by librarians. More research is

needed to understand how librarians are using and employing code so that a fuller

scope of examples can inform the how and why of coding within the profession of

librarianship, and so that evidence-based suggestions about programming education

and practice can be made.

Dalhousie Journal of Interdisciplinary Management – Volume 11 – Spring 2015 17

References

Abraham, S., Chapman, S., Flecker, D., Kreigsman, S., Marinus, J., McGath, G. &

Wendler, R. (2005). Harvard’s perspective on the archive ingest and handling

test. D-Lib Magazine, 11(12), 1. http://doi.org/10.1045/december2005-abrams

An IT Person (2011). On Kim, B. why not grow coders from the inside of libraries? [Web

log comment]. Retrieved December 14, 2015 from

http://www.bohyunkim.net/blog/archives/1099

Banerjee, K. & Johnson, M. (2015). Improving access to archival collections with

automated entity extraction. The Code4Lib Journal, (29). Retrieved from

http://journal.code4lib.org/articles/10726

Bartle, L. (2000). Mounting a web-accessible database: a model for beginners. College

& Undergraduate Libraries, 7(2), 111.

Belfiore, D. (2012). Case study: using perl and cgi scripts to automate a quality control

workflow for scanned congressional documents. The Code4Lib Journal, (17).

Retrieved from http://journal.code4lib.org/articles/6731

Bivens-Tatum, W. (2013). Why I ignore gurus, sherpas, ninjas, mavens, and other sages.

Retrieved from https://blogs.princeton.edu/librarian/2013/03/why-i-ignore-

gurus-sherpas-ninjas-mavens-and-other-sages/

Breeding, M. (2002). Expanding the systems librarian’s toolkit. Information Today, 19(1),

36.

Choi, Y. & Rasmussen, E. (2006). What is needed to educate future digital librarians: A

study of current practice and staffing patterns in academic and research

libraries. D-Lib Magazine, 12(9). http://doi.org/10.1045/september2006-choi

Chudnov, D., Kerchner, D., Sharma, A. & Wrubel, L. (2014). Technical challenges in

developing software to collect twitter data. Code4Lib Journal, (26), 1.

Computer Engineer & Librarian (2011). On Kim, B. why not grow coders from the inside

of libraries? [Web log comment]. Retrieved December 14, 2015 from

http://www.bohyunkim.net/blog/archives/1099

Finch, M. (2013). The evolving metadata librarian: creating and managing data about

data. In Peacock, R. & Wurm, J. (Ed). The New academic librarian: Essays on

changing roles and responsibilities. Jefferson: McFarland.

Frank, H. (2013). Augmenting the cataloger’s bag of tricks : using marcedit, python,

and pymarc for batch-processing marc records generated from the

archivists’ toolkit. The Code4Lib Journal, (20). Retrieved from

http://journal.code4lib.org/articles/8336#note1

Goddard, L. (2003). The integrated librarian: IT in the systems office. Library Hi Tech,

21(3), 280–288.

http://doi.org/10.1045/december2005-abrams
http://doi.org/10.1045/december2005-abrams
http://www.bohyunkim.net/blog/archives/1099
http://www.bohyunkim.net/blog/archives/1099

Librarians and Computer Programming

Godfrey, B. & Kenyon, J. (2015). The geospatial metadata manager’s toolbox: three

techniques for maintaining records. The Code4Lib Journal, (29). Retrieved

from http://journal.code4lib.org/articles/10601

Gordon, R.S. (2003). Overcoming the systems librarian imposter syndrome. Libres, 13(2).

Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-

3042638951&partnerID=40&md5=00c4b33783b9e7117db687e3657db647

Greene, A. (2008). Managing subject guides with SQL Server and ASP.Net. Library Hi

Tech, 26(2), 213–231.

Highsmith, A., Jordan, M., Llona, E., Murray, P. E. & Summers, E. (2002). MARC it your

way: MARC.pm. Information Technology and Libraries, 21(1), 19–25.

Intner, S.S. & Lazinger, S.S. (2011). Afterword. In Conversations with catalogers in the

21st century. Santa Barbara, California: Libraries Unlimited.

Jenkins, K. (2009). Deciphering journal abbreviations with jabbr. The Code4Lib Journal,

(7). Retrieved from http://journal.code4lib.org/articles/1758#fn7

Kane McElfresh, L. (2012). The year of coding, the future of catalogers. Technicalities,

32(4), 5–7.

Kelley, K.J. (2015). The Myth and Magic of Library Systems. Chandos Publishing.

Kim, B. (2011). Why not grow coders from the inside of libraries?. Retrieved from

http://www.bohyunkim.net/blog/archives/1099

Kim, B. (2012). effectively learning how to code: tips and resources. Retrieved from

http://acrl.ala.org/techconnect/post/effectively-learning-how-to-code-tips-

and-resources

Maceli, M. (2015). What technology skills do developers need? A text analysis of job

listings in library and information science (LIS) from Jobs.code4lib.org.

Information Technology & Libraries, 34(3), 8–21.

McGlone, J. (2013). Looking under the hood: a view of the digital projects librarian in

the academic library. In Peacock, R. & Wurm, J. (Ed). The New academic

librarian: Essays on changing roles and responsibilities. Jefferson: McFarland.

McMullen, A. & Gray, B. (2012). From static to dynamic using the OPAC to generate

real-time lists of departmental acquisitions for library current awareness

service. Library Hi Tech, 30(4), 673–682.

http://doi.org/10.1108/07378831211285121

Michel, J. P. & Ladd, M. (2015). “Snow Fall”-ing special collections and archives.

Journal of Web Librarianship, 9(2-3), 121–131.

http://doi.org/10.1080/19322909.2015.1044689

Miller-Francisco, E. (2010). Creating Dynamic Websites Using jQuery. Computers in

Libraries, 30(6), 26–28.

Dalhousie Journal of Interdisciplinary Management – Volume 11 – Spring 2015 19

Murray, P. E. (2012). The security implications of teaching librarians to program.

Retrieved from http://dltj.org/article/security-implications-of-librarian-

developers/

Nackerud, S. A. (1998). The potential of cgi: using pre-built cgi scripts to make

interactive web pages. Information Technology and Libraries, 17(4), 222.

Neugebauer, T., Carson, P. & Krujelskis, S. (2015). Using SemanticScuttle for managing

lists of recommended resources on a library website. The Code4Lib Journal,

(27). Retrieved from http://journal.code4lib.org/articles/10269

Neugebauer, T. & Han, B. (2012). Batch ingesting into eprints digital repository software.

Information Technology & Libraries, 31(1), 113–125.

Ogier, A. L., Sechler, M. W. & Aschmann, A. (2013). Teaching wild horses to sing:

managing the deluge of electronic serials. Serials Librarian, 64(1-4), 99–104.

http://doi.org/10.1080/0361526X.2013.760354

Orphanides, A. K. (2011). Lessons in public touchscreen development. The Code4Lib

Journal, (15). Retrieved from http://journal.code4lib.org/articles/5832

Putnam, L. (2013). Should librarians learn to code?. Retrieved from

http://www.nextlibraries.org/2013/12/should-librarians-learn-to-code/

Raju, J. (2014). Knowledge and skills for the digital era academic library. The Journal of

academic librarianship, 40(2), 163–170.

http://doi.org/10.1016/j.acalib.2014.02.007

Randtke, W. (2013). Automated metadata creation: Possibilities and pitfalls. The Serials

librarian, 64(1-4), 267–284. http://doi.org/10.1080/0361526X.2013.760286

Ranti. (2011). On Kim, B. why not grow coders from the inside of libraries? [Web log

comment]. Retrieved December 14, 2015 from

http://www.bohyunkim.net/blog/archives/1099

Rhyno, A. (2003). From library systems to mainstream software: How Web technologies

are changing the role of the systems librarian. Library Hi Tech, 21(3), 289–296.

Rimkus, K. R. & Hess, K. M. (2014). HathiTrust ingest of locally managed content: a case

study from the University of Illinois at Urbana-Champaign. Code4Lib Journal,

(25), 7.

Roberts, G. (2005). Learning server-side scripting. Computers in libraries, 25(8), 37–39.

Sanchez, E. (2011). Conversations with catalogers in the 21st century. Santa Barbara,

California: Libraries Unlimited.

Schulkins, D. R. & Schulkins, J. (2015). Streamlining book requests with chrome. The

Code4Lib journal, (30). Retrieved from

http://journal.code4lib.org/articles/10996

http://doi.org/10.1080/0361526X.2013.760286
http://doi.org/10.1080/0361526X.2013.760286
http://www.bohyunkim.net/blog/archives/1099
http://www.bohyunkim.net/blog/archives/1099

Librarians and Computer Programming

Schwartz, C. (2011). Changing mind-set, changing skill set: transition from cataloger to

metadata librarian. In Conversations with catalogers in the 21st century.

Santa Barbara, California: Libraries Unlimited.

Surratt, B. E. & Hill, D. (2004). ETD2MARC: a semiautomated workflow for cataloging

electronic theses and dissertations. Library collections acquisitions &

technical services, 28(2), 205–223. http://doi.org/10.1016/j.lcats.2004.02.014

Tennant, R. (1999). Skills for the new millennium. Library journal, 124(1), 39.

Thomale, J. (2010). Interpreting MARC: where’s the bibliographic data? The Code4Lib

journal, (11). Retrieved from http://journal.code4lib.org/articles/3832

Tidal, J. (2013). The evolving role of the web librarian. In Peacock, R. & Wurm, J. (Ed).

The New academic librarian: Essays on changing roles and responsibilities.

Jefferson: McFarland.

Walker, D. (2007). Building custom metasearch interfaces and services using the

MetaLib X-Server. Internet Reference Services Quarterly, 12(3/4), 325–339.

Watson, J., Hawthorne, D. & Wishnetsky, S. (2008). ERM on a shoestring: betting on an

alternative solution. The Serials Librarian, 54(3-4), 245–252.

http://doi.org/10.1080/03615260801974206

Wilkinson, L. (2013). Is coding an essential library skill? Retrieved from

https://senseandreference.wordpress.com/2013/03/08/is-coding-an-

essential-library-skill/

Will K. (2011). On Kim, B. why not grow coders from the inside of libraries? [Web log

comment]. Retrieved December 14, 2015 from

http://www.bohyunkim.net/blog/archives/1099

Wisniewski, J. (2012). Parlez-Vous Code? Online, 36(6), 57–60.

Yelton, A., & ALA TechSource. (2015). Coding for librarians: learning by example

(Library technology reports No. 51(3)) (p. 34).

Yelton, A. (2013). On Wilkinson, L. is coding an essential library skill? [Web log

comment]. Retrieved December 14, 2015 from

https://senseandreference.wordpress.com/2013/03/08/is-coding-an-

essential-library-skill/

Yelton, A. (2012). why should librarians learn python? (a better answer). Retrieved from

http://andromedayelton.com/blog/2012/08/28/why-should-librarians-learn-

python-a-better-answer/

Zou, Q. (2015). A novel open source approach to monitor ezproxy users’ activities. The

Code4Lib Journal, (29). Retrieved from

http://journal.code4lib.org/articles/10589

https://senseandreference.wordpress.com/2013/03/08/is-coding-an-essential-library-skill/
https://senseandreference.wordpress.com/2013/03/08/is-coding-an-essential-library-skill/
http://www.bohyunkim.net/blog/archives/1099
http://www.bohyunkim.net/blog/archives/1099
https://senseandreference.wordpress.com/2013/03/08/is-coding-an-essential-library-skill/
https://senseandreference.wordpress.com/2013/03/08/is-coding-an-essential-library-skill/
http://andromedayelton.com/blog/2012/08/28/why-should-librarians-learn-python-a-better-answer/
http://andromedayelton.com/blog/2012/08/28/why-should-librarians-learn-python-a-better-answer/
http://journal.code4lib.org/articles/10589

