Monitoring of Rock Stress Redistribution in Geological CO₂ Sequestration

Enji Sun¹, Erik Westman², Ben Fahrman² and Xu Ma³
¹ China Academy of Safety Science and Technology, Beijing, China
² Department of Mining and Mineral Engineering, Virginia Tech, Blacksburg, VA, USA

Abstract: Shale gas has become an increasingly important clean energy, which has been explored worldwide in recent decades. Supercritical CO₂ acts as fracturing fluid for shale gas production. The safety monitoring is essential to prevent any kinds of leakage from the reservoir as the supercritical CO₂ physically stored hundred kilometres underground. Seismic tomography is an imaging technique that uses induced seismic waves to create three dimensional images of the subsurface. It is an effective monitoring method to evaluate the caprock integrity in the carbon dioxide sequestration storage (CCS). In this experimental research, a simulated uniaxial compressive load is applied on a granite sample to analyze the stress redistribution for long-term in-situ caprock integrity during CO₂ injection. The induced seismic waves are recorded and seismic events are traced based on the Geiger algorithm. The frequency of seismic events correlates with the caprock failure evolution. The acquired seismic data is divided into four regimes based on the frequency of seismic events and the failure process to examine the failure evolution. Furthermore, the travel time and distance is plotted to analyze the variation of velocity. Finally, the double difference tomography (TomoDD) algorithm using arrival time is adopted to recalculate the locations of seismic events and velocity structure in each regime. The results indicate that the passive seismic system can map the caprock stress distribution and allow for imaging of the caprock integrity. TomoDD exhibits sound improvements to relocate seismic events both in relative and absolute locations as well as to characterize the local velocity structure. The study further reveals that seismic monitoring along with TomoDD could evaluate the caprock failure accurately in the CCS.

Keywords: shale gas, carbon dioxide sequestration storage, seismic monitoring, caprock integrity, TomoDD

1. Introduction

To reduce the CO₂ concentration in the atmosphere, CO₂ capture and sequestration (CCS) has been suggested to as a means of continuing to use fossil fuel resources while offsetting their negative environmental impacts (Eiken et al 2011). A positive CCS project should retain 99% of the injected supercritical CO₂ (pressure is greater than 7.38 MPa and temperature is above 31.04°C) over at least 100 years (Davidson et al 2005). As large quantities of supercritical carbon dioxide are being injected into full scale storage projects, caprock stress is redistributing and the leakage could occur anywhere over a wide storage area (Hou et al 2012). Acoustic waves are emitted from the caprock, as it fractures due to the CO₂ injection, which can be detected by passive seismic sensors (Shitashima et al 2013). Tomography techniques are advantageous for imaging the integrity of the caprock in the CCS projects. Velocity tomography uses waves to model entities based on the arrival time of waves (Westman et al 2001, Westman 2004, Luxbacher et al 2008). Seismic tomography is a data inference technique that exploits information contained in seismic records to constrain 2D or 3D models of the Earth's interior. It generally requires the solution of a large inverse problem to obtain a heterogeneous seismic model that is consistent with field observations (Kudryavtsev et al 2012).

To simulate the caprock stress distribution that can occur at a potential underground storage site, a uniaxial compression test is performed on the granite sample. The sample failure procedure is recorded and the seismic data is analyzed. The double difference tomography algorithm is applied to calculate the seismic event relocation and velocity structure. TomoDD exhibits solid improvement to relocate seismic events both in relative and absolute locations as well as to characterize the local velocity structure. The study further reveals that seismic monitoring along with TomoDD could evaluate the caprock failure accurately in the CCS.

2. The Experimental Structure and Failure Results

2.1 Experiment design and configuration of the system

A granite sample is prepared in a size of 204 mm× 51 mm× 32 mm. Passive seismic sensors are mounted on the sample to observe the induced elastic waves. The sample is placed on the platform of the MTS810 compressive testing system, where a constant uniaxial compressive load rate is applied to the granite sample until its failure. The force and displacement data is documented in the MTS control center server. After amplification and filtering, the signals from the sensors are transmitted to the ESG seismic monitoring system. The locations of seismic events are calculated depends on...

* Corresponding Author: E.J. Sun, enjisu@gmail.com, phone: +86 10-84916615
Copyright © 2017 Camampe Academia Services, http://press.camdemia.ca
DOI: 10.15273/gree.2017.02.020
the sensor’s locations, the signal’s arrival time and the velocity of compressive waves. The experimental arrangement is schematically displayed in Figure 1.

![Figure 1. Experimental system for measurement of seismic event location.](image)

The absolute displacement level calibration is 1.52 mm and the uniaxial compressive load period is established to 43,200 seconds in the MTS control software. Therefore, the constant compressive load rate is 3.53e-5mm/s. The applied load and stroke position are monitored by the MTS system and then plotted on the force versus stroke position curve. The compressive load data is saved into the MTS server for further analysis. When the force reaches the peak load, the MTS holds the load level to prevent an instant controlled pressure drop. In this experiment, the seismic monitoring system is composed of the passive seismic sensors and ESG monitoring software. Mounted on the surface at the granite sample are Alpha R6 physical acoustic uniaxial geophones, with a range from 35 kHz to 100 kHz operating frequency and 75 dB peak sensitivity. The arrangement of the sensors plays an important role in a seismic monitoring network. All the surfaces of the sample are polished to give the super glue a better footing for the sensors. If top surface of the sample is assumed as zero level, twelve sensors are attached on -50 mm, -100 mm and -150 mm levels of the sample.

Before the configuration of the ESG software, the origin of the local coordinate system is defined at the left-lower corner on the top surface of the sample. The direction that extends from the left-lower corner to the right-lower corner is defined as the East on the top surface. The North direction is perpendicular to the East on the top surface. The Depth is vertical with the top surface of the sample and increases downward.

2.2 Sample failure results and frequency of the seismic events

After 36,053 seconds (10.01 hour) of uniaxial compressive load, the peak load reaches 166.1 kN with 1.27 mm displacement. The granite sample fails after 36,180 seconds (10.05 hour) of continuing compressive load. Three significant brittle failures occur before the ultimate failure. The passive seismic sensors record the seismic wave’s arrival time during the load process on sample. A total of 842 seismic events are positioned by the ESG system using Geiger algorithm (Geiger 1912). Seismic events occur in a lower event frequency before the compressive load reaches the peak value. The seismic events are triggered when the microcracks coalescence or failure occurs inside of the sample. Some insignificant cracks could be observed at the location of 30 mm east, 60 mm depth. No rock failure happened before the peak load. The frequency of the seismic events is plotted with the force versus displacement curve in Figure 2.

![Figure 2. Force and displacement curve with seismic event occurrence frequency plot.](image)

The shear failure occurs concurrently with a high frequency of the seismic events as the compressive load is closed to the peak value. Three significant rock failures take place during the process that coincide with the increment of seismic events frequency. The first major failure occurs at the peak load with a frequency of 61 events/min, the second failure occurs after the peak load with a frequency at 53 events/min, and the seismic events rate is 113 events/min during the last one.

3. Double Difference Seismic Tomography Calculation and Velocity Structure Analysis

3.1 Failure procedure division and seismic event locations

The seismic data is divided into four regimes based on the frequency of seismic events and failure process. The first regime encapsulates the beginning of compressive load to the moment of first peak frequency of events. Regime number two starts when the event frequency decreased and ends prior to the second peak frequency of events. Regime number three is when the sample reaches peak compressive load and begins to approach failure. Regime four includes the data at failure and post failure. The data is divided into four regimes based on the frequency of seismic events as shown in Figure 3.

Regime 1, regime 2 and regime 3 are in the period of ascending compressive load. The load keeps increasing at a constant rate in these regimes. The last regime is post peak load period as the failures happened. The detailed regime’s
separation and seismic event distribution are exhibited in Table 1.

Figure 3. The data is divided into four regimes based on the frequency of seismic events.

<table>
<thead>
<tr>
<th>Regime ID</th>
<th>Load time(s)</th>
<th>Peak event frequency</th>
<th>Number of seismic events</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>0–34,371</td>
<td>33</td>
<td>246</td>
</tr>
<tr>
<td>R2</td>
<td>34,372–35,751</td>
<td>61</td>
<td>258</td>
</tr>
<tr>
<td>R3</td>
<td>35,752–36,051</td>
<td>61</td>
<td>162</td>
</tr>
<tr>
<td>R4</td>
<td>36,052–36,181</td>
<td>113</td>
<td>176</td>
</tr>
</tbody>
</table>

As the compressive load increases, the seismic events concentrate on 20 mm in the north direction and 40 mm in depth direction in R1. The majority of the events are located at a 50 mm depth after post peak load in R4. The seismic event locations distribution of different regimes in a view from the left is displayed in Figure 4.

The seismic events aggregate at 40 mm in the east direction in regime one. The events distribute in the center of the sample in regime number two. Then the majority events are located at 20 mm in the east direction before the peak load. At regime number four, most events are located at a 50 mm depth. The seismic event locations distribution of different regimes in a view from the front is presented in Figure 5.

The events concentrate at 25 mm in the north direction and 40 mm in the east direction in regime one. The density of events cluster at 20 mm in the north direction and 20 mm in the east direction in regime number three. The events are kind of scattered after the peak load in regime four. The seismic event locations distribution of different regimes in a view from the top is shown in Figure 6.
3.2 Double difference seismic tomography calculation and velocity model constructor

The locations of seismic events are somewhat scattered in the east direction, as mentioned above. The double difference (DD) seismic location algorithm is used to relocate seismic events in the presence of measurement errors and model uncertainty (Zhang and Thurber 2003).

In the double-difference relocation algorithm, the arrival time T from a seismic event i to a sensor station k is expressed as:

$$ T_k^i = \tau_i^i + \int u ds $$

In this equation, τ_i^i is the origin time of event i, u is the slowness field, and ds is an element of path length. d_T^{ij} is the residual between observed and calculated differential travel time between the two events defined as double-difference equation (Waldhauser and Ellsworth 2000, Waldhauser 2001):

$$ d_T^{ij} = (t_k^i - t_k^j)_{\text{obs}} - (t_k^i - t_k^j)_{\text{cal}} $$

The tomoDD identifies events that can make an event pair, and categorizes the station or stations that each pair can be linked to in order to make travel time corrections to that station (Zhang and Thurber 2003, Zhang and Thurber 2006). Ultimately the event pairs are grouped together in clusters and the least squares solution for each cluster is found to achieve relative locations.

The relocated seismic events show fewer events than the original ones. The events around 20 mm in the north direction and 50 mm in the depth direction are more densely clustered after the relocation processing. The events are relocated at 15 mm in the north direction in R2 and R3 before the peak load. Few events are located at 10 mm in the north direction in R4. The seismic event relocations distribution of different regimes in a view from the left is depicted in Figure 7.

The relocated seismic events show fewer events than the original ones. The events around 20 mm in the north direction and 50 mm in the depth direction are more densely clustered after the relocation processing. The events are relocated at 15 mm in the north direction in R2 and R3 before the peak load. Few events are located at 10 mm in the north direction in R4. The seismic event relocations distribution of different regimes in a view from the left is depicted in Figure 7.

The event relocations of R1 are clustered at 50 mm in the depth direction. As the compressive load increases, the events of R2 cluster around 50 mm in the depth direction. The events relocate at 20 mm in the east direction before the peak load in R3. R4 shows the events gather at 50 mm in the depth direction. The seismic event relocations distribution of different regimes in a view from the front is shown in Figure 8.

The event relocations occur at 20 mm in the north direction and 40 mm in the east direction in R1. As load increases, the event relocations are kind of scattered in the east direction in R2. The event relocations cluster at 25 mm in the east direction in R3 before the peak load. Few events are relocated at 25 mm in the east direction in R4 after the peak load. The seismic event relocations distribution of different regimes in a view from the top is presented in Figure 9.

The event relocations occur at 20 mm in the north direction and 40 mm in the east direction in R1. As load increases, the event relocations are kind of scattered in the east direction in R2. The event relocations cluster at 25 mm in the east direction in R3 before the peak load. Few events are relocated at 25 mm in the east direction in R4 after the peak load. The seismic event relocations distribution of different regimes in a view from the top is presented in Figure 9.
The high velocity zones locate at 22 mm in the north direction in R1. Due to the antistrophic parameters of the granite sample, the high velocity zones expand and show up at 18 mm in the north direction and at a depth of 50 mm in R2. The high velocity zones locate at 25 mm in the north direction in R3 as the load peaked. After three major failures, the high velocity zones are much smaller in R4. Orthogonal image of velocity structure of different regimes in a view from the right is shown in Figure 10.

![Image](image1.png)

Figure 10. Orthogonal image of velocity structure of different regimes in a view from the right.

The high velocity zones locate at 40 mm in the east direction and 50 mm in depth direction in R1. As the compressive load increases, the high velocity zones expand in the east direction and locate deeper in R2. The high velocity zones concentrate at 40 mm in the east direction and at a 40 mm depth. They extend from 30 mm to 80 mm in the depth direction in R3. The high velocity zones locate at 20 mm in the east direction and 90 mm in the depth direction. Orthogonal image of velocity structure of different regimes in a view from the front is displayed in Figure 11.

![Image](image2.png)

Figure 11. Orthogonal image of velocity structure of different regimes in a view from the front.

The high velocity zones first gather at 25 mm in the north direction and 30 mm in the east direction in R1. Then they expand to 15 mm in the north direction and 15 mm in the east direction. The high velocity zones reduce a lot after the failure in R4. Orthogonal image of velocity structure of different regimes in a view from the top is presented in Figure 12.

![Image](image3.png)

Figure 12. Orthogonal image of velocity structure of different regimes in a view from the right.

4. Conclusions

In this experimental research, a simulated uniaxial compressive load is applied on the granite sample to analyze the stress redistributing for long-term in-situ caprock integrity during the CO$_2$ injection. The induced seismic waves are recorded while seismic events are traced based on the Geiger algorithm. The frequency of seismic events is correlated with the caprock failure evolution. The acquired seismic data is divided into four regimes based on the frequency of seismic events and failure process to examine the failure evolution. Furthermore, the travel time and distance is plotted to analyze the velocity’s variation. As a final point, the double difference tomography (TomoDD) algorithm is adopted to recalculate the locations of seismic events and velocity structure in each regime by using arrival time.

The results indicate that the passive seismic system can map the caprock stress distribution and allow for imaging of the caprock integrity. TomoDD exhibits sound improvements to relocate seismic events both in relative and absolute locations as well as to characterize the local velocity structure. Tomography provides a visual representation of the stress distribution beneath the surface, allowing for non-intrusive imaging of the rock mass. Double difference tomography has the ability to relocate the seismic events both in relative and absolute locations, as well as characterizing the local velocity structure.

The study further reveals that seismic monitoring along with TomoDD could evaluate the caprock failure accurately in the CCS, which could improve the sustainable development in the minerals industry.

Acknowledgement

We sincerely thank all the members of the Geomechanics Observation and Imaging (GOI) for their insights and helpful comments about this paper. This work has been sponsored by the National Energy Technology Laboratory (NETL) and performed under the auspices of the U.S. Department of Energy (DOE) under contract 4000.4.641.061.001.531. This work is also supported by
National Natural Science Foundation of China (71373245, 50974109, 2016YFC0801305), the basic research funding of China Academy of Safety Science and Technology (2016JBKY07).

References

Geiger, L., 1912. Probability method for the determination of earthquake epicenters from the arrival time only. Saint Louis University, 8: 60 - 71.

