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ABSTRACT

A foundation tree species, eastern hemlock (Tsuga canadensis) is 
threatened by the invasive hemlock woolly adelgid (Adelges tsugae) 
(HWA) in southwestern Nova Scotia, Canada. The loss of this key 
species and its heavily shaded ecosystems may alter the diversity of 
important mycorrhizal fungi in hemlock forests. Mycorrhizal fungi share 
a vital mutualistic relationship with their host trees; consequentially, 
understanding if and how the predicted eastern hemlock decline will 
affect mycorrhizal diversity is paramount. Using available literature, 
we discuss three major consequences of HWA on eastern hemlock 
ecosystems – changing forest composition, loss of old-growth trees, 
and increased insect stress on host trees – and how they will likely 
influence mycorrhizal communities as adelgid infestations intensify. 
Environmental variables are also discussed as another major influence 
on fungal diversity. We conclude that the mycorrhizal community of 
eastern hemlock forests will likely change significantly as old-growth 
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hemlock is replaced with mixed forest. We also suggest that mycorrhizal 
community composition will shift in favour of generalist mycorrhizae 
which form symbioses with multiple tree species. These conclusions 
illuminate the future of hemlock forest fungi in southwestern Nova 
Scotia and underline the importance of conserving old-growth eastern 
hemlock forests and their unique fungal communities. 

Keywords: Eastern hemlock, Hemlock woolly adelgid, Mycorrhizal 
fungi 

INTRODUCTION

Eastern hemlock (Tsuga canadensis) is a foundational tree species 
of Acadian or Wabanaki forest (Ellison et al. 2005, Ellison 2014, Parks 
Canada 2021). Widespread across eastern North America (Godman 
& Lancaster 1990, Ellison 2014), this species is often found grow-
ing in monoculture stands (Goerlich & Nyland 2000, Ellison et al. 
2005) and matures slowly, sometimes achieving lifespans of 800 
years or more (Godman & Lancaster 1990). Eastern hemlock cre-
ates distinctive environmental conditions – in particular, its thick, 
shady canopies reduce temperatures on the forest floor by restricting 
light levels (Canham et al. 1994, Hadley 2000). In addition, its fallen 
needles decompose slowly (Cobb et al. 2006) leading to low rates 
of nutrient cycling and calcium mineralization (Finzi et al. 1998a, 
b, Jenkins et al. 1999, Dijkstra 2003) and acidic soils which are rich 
in organic material (Mladenoff 1987, Finzi et al. 1998a, b, Fassler et 
al. 2019). Eastern hemlock stands host a unique ecosystem (Ellison 
2014) which is dependent on the distinctive environmental conditions 
provided by this tree species. As such, eastern hemlock is considered 
a forest foundation species (Ellison et al. 2005) without which the 
associated ecosystem could not survive. Furthermore, recent declines 
of eastern hemlock due to an invasive pest are concerning ecologists 
throughout eastern North America. 

The hemlock woolly adelgid (Adelges tsugae) (HWA) is a tiny, 
aphid-like insect which attaches to the base of hemlock needles and 
feeds on the xylem ray parenchyma, causing needle loss and eventual 
branch or tree mortality with large infestations (Orwig & Foster 1998). 
Native to East Asia and the Pacific Northwest of North America, 
HWA was first detected in the southeastern United States in the 
1950s, likely introduced from a southern Japanese population (Stoet-
zel 2002, Havill et al. 2006, 2016, Crandall et al. 2022), and has been 
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moving north ever since. HWA is particularly destructive for eastern 
hemlock because this pest has no natural insect predators in eastern 
North America, unlike in its native ranges in Asia and western North 
America (Sasaji & McClure 1997, Kohler 2007, Crandall et al. 2022). 
Further, eastern hemlock appears to have little to no natural immu-
nity to HWA (Ingwell & Preisser 2011). A heavy HWA infestation 
can kill a mature eastern hemlock tree in 4-10 years (McClure 1991, 
Orwig et al. 2002) and can prevent stand regeneration by damaging 
saplings below infested canopies (Orwig & Foster 1998). Many of 
the organisms in eastern hemlock ecosystems may be affected by the 
loss of this foundation species, including one group which is often 
overlooked, yet crucially important to these ecosystems: fungi.

Forest ecosystems as we know them could not exist without forest 
fungi. These important decomposers and mutualists facilitate nutrient 
cycling in the ecosystem by liberating nutrients trapped in organic 
and inorganic material, which can then re-enter the food web (Hobbie 
et al. 1999, Fukasawa 2011, Shortle & Smith 2015). Many fungi form 
mutualistic associations with plants and trees (Egli 2011, Lindahl & 
Tunlid 2015, Sapsford et al. 2017). These are known as mycorrhizal 
fungi, or mycorrhizae, and nearly all land plants form associations 
with them (Wang & Qiu 2006, Willis et al. 2013, Jacquemyn & 
Merckx 2019). Evolved from saprobic fungi (Kohler et al. 2015, 
Lindahl & Tunlid 2015), which break down dead organic material, 
mycorrhizal fungi form mutualistic partnerships with plant roots to 
trade water and nutrients scavenged from the environment for photo-
synthetic sugars produced by the host plant. There are two main types 
of mycorrhizae that associate with trees: ectomycorrhizae (ECM) 
and arbuscular mycorrhizae (AM). Ectomycorrhizae form branch-
ing structures called Hartig nets around and between the cortical 
cells of the host tree’s fine roots, which they use to interface with the 
tree and exchange resources (Nehls 2008). Many conifers, including 
eastern hemlock, and some hardwoods commonly associate with 
ECM (Molina et al. 1992). Arbuscular mycorrhizae also interface 
with the root cells of a host tree; however, rather than extracellular 
Hartig nets, these fungi form tree-like structures called arbuscules 
inside root cortical cells – this is why AM are also considered endo-
mycorrhizae. Arbuscular mycorrhizae are much more common than 
ECM, colonizing hardwood trees such as maple and ash, and most 
herbaceous plants (Molina et al. 1992, Willis et al. 2013). They also 
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show less preference for a particular host species, and are therefore 
considered generalists (Moora et al. 2011). Both types of mycor-
rhizae can be found in most forest ecosystems, including in those of 
southwestern Nova Scotia.

The landscape of southwestern Nova Scotia consists of rolling 
hills of Wabanaki mixed forest, frequently interspersed with lakes 
and rivers (Polach 1992). Much of this area is part of the Southwest 
Nova Biosphere Reserve – a UNESCO-designated reserve which is 
made up of crown lands, wilderness areas, nature reserves, national 
and provincial parks, and transition zones (Southwest Nova Bio-
sphere 2023). This reserve includes the Tobeatic Wilderness Area 
and Kejimkujik National Park and National Historic Site, which 
contains some of the largest old-growth eastern hemlock stands in 
the province (Parks Canada, pers. comm. 2022). HWA was detected 
in southwestern Nova Scotia in 2017 and was likely present for about 
10-15 years prior to its discovery (Parks Canada, 2021, Parks Canada, 
pers. comm. 2023). While conservation efforts are ongoing, unfor-
tunately, researchers predict that up to 80% of eastern hemlock in 
southwestern Nova Scotia will be lost to this insect pest by 2030 
(Parks Canada 2021). This may have profound consequences for the 
hemlock ecosystems in this region. 

Mycorrhizal diversity in southwestern Nova Scotia is currently 
undocumented but is being studied by the authors of this essay.  
Since mycorrhizal fungi play important roles in sustaining long-term 
forest communities, any changes in fungal diversity and abundance 
can have profound effects on forest health and regeneration (O’Brien 
2009, Talbot et al. 2014); therefore, it is crucial to understand if and 
how these mycorrhizal communities will be altered by forest distur-
bances. Mycorrhizal communities in eastern hemlock forests may be 
greatly impacted by HWA in several ways. Altered forest composi-
tion, loss of old-growth trees, and increased insect stress on host trees 
are all consequences of HWA which will likely affect fungal diversity. 
Environmental changes caused by pollution and by shifts in forest 
conditions may also have an important influence on mycorrhizal 
diversity and should be considered to gain a more complete under-
standing of mycorrhizal dynamics (Egli 2011, Sapsford et al. 2017). 
In this essay, we use the available literature to discuss the effects 
of three major factors related to HWA invasion – changing forest  
composition, loss of old-growth trees, and increased insect stress – on 
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the mycorrhizal diversity of eastern hemlock stands. The effects of 
altered environmental variables on forest fungi are also considered. 
Finally, we discuss the significance of shifting mycorrhizal diversity 
and how changes in these key fungal communities may influence the 
forests of southwestern Nova Scotia as HWA infestations progress. 

DISCUSSION

The increasing diversity of tree and plant species within histori-
cally hemlock-dominated stands may significantly alter mycorrhizal 
community diversity in the forests of southwestern Nova Scotia. 
Forest fungal communities are very sensitive to vegetation changes 
(Packham et al. 2002, Landi et al. 2015) and their diversity is mainly 
driven by forest succession and composition (Dighton et al. 1986, 
Last et al. 1987, Rineau et al. 2010, Spake et al. 2016, Tomao et 
al. 2020). Accordingly, the diversity of both ECM and AM are 
very likely to shift in southwestern Nova Scotian forests as eastern 
hemlock is replaced by other conifer and hardwood tree species.  
Some diversity may be lost because certain ECM can only associate 
with specific tree species (Molina et al. 1992, Dickie et al. 2009, 
Tomao et al. 2020). As hemlock stands decline, any ECM which rely 
solely on eastern hemlock will likely not survive; for example, stipi-
tate hydnum fungi (toothed fungi) are generally hemlock-associated 
ECM, many members of which are in danger of regional extinction 
due to hemlock loss (Baird et al. 2013). Additionally, Fassler et al. 
(2019) suggest that ECM diversity becomes simplified and homo-
genized after eastern hemlock forests decline; however, the hemlocks 
in this study – conducted in western Massachusetts, USA – were 
replaced mainly by black birch (Betula lenta), which is absent in Nova 
Scotia. Instead, the hemlock stands in southwestern Nova Scotia will 
most likely be replaced by many different tree species; for example, 
in Kejimkujik National Park and National Historic site, eastern hem-
lock forests were replaced by white birch (B. papyrifera), red maple 
(Acer rubrum), Balsam fir (Abies balsamea), red and black spruce 
(Picea rubens, P. mariana), and white pine (Pinus strobus) after out-
breaks of pale-winged grey moth (Iridopsis ephyraria) in 2002-2006 
caused severe defoliation of eastern hemlocks (Hervieux 2013, Parks 
Canada, pers. comm. 2023). Tree species diversity and ECM diversity 
are positively related (Kernaghan et al. 2003, Cavard et al. 2011); 
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therefore, the ECM diversity of southwestern Nova Scotian forests 
may actually increase as hemlock-dominated stands are replaced 
with mixed forest, despite losing certain hemlock-dependent ECM 
species. Moreover, the abundance and diversity of AM are likely to 
increase as the forest canopy opens and more hardwood species and 
herbaceous plants move in with the increased light, outcompeting 
the slow-growing hemlock seedlings (Battles et al. 1999, Catovsky & 
Bazzaz 2000, Haskins & Gehring 2005, Weber et al. 2005). Overall, 
the diversity of ECM and the abundance of AM fungi in southwestern 
Nova Scotian forests are very likely to change due to eastern hemlock 
loss and may even increase due to the changing forest composition. 

The loss of old-growth forest may also alter mycorrhizal diversity in 
southwestern Nova Scotia; however, this change is likely to decrease 
ECM diversity. It has been well established that old-growth forests can 
support a higher diversity of ECM, either because they accumulate 
fungal species over time, or because they attract mycorrhizal fungi 
which have adapted specifically to associate with older trees (Birch et 
al. 2023). A study by Kranabetter et al. (2018) found up to 238 ECM 
species in old-growth Douglas fir stands in British Columbia. Addi-
tionally, Kranabetter et al. (2005) determined that the ECM diversity 
of old-growth western hemlock stands was almost twice that of their 
younger counterparts. Canopy closure of maturing forests has also 
been associated with greater ECM species diversity (Dighton et al. 
1986) and increased mushroom production (Wallander et al. 2010), 
perhaps because the shady canopies help to retain moisture on the 
forest floor. Twieg et al. (2007) suggest that the greatest increase in 
mycorrhizal diversity occurs between the ages of 5 and 26 years in 
mixed forest, which also coincides with canopy closure for many tree 
species. This not only implies that the loss of old-growth trees will 
significantly reduce mycorrhizal diversity, but also that the regener-
ating forest will not achieve canopy cover, and thus a more diverse 
mycorrhizal community, for decades afterward. This could include 
the loss of important ECM fruiting bodies such as truffles (Stephens 
et al. 2017) which support insect and small mammal food webs (Shaw 
1992, Luoma et al. 2003). In summary, the loss of old-growth trees 
may cause a significant reduction of ECM diversity in southwestern 
Nova Scotian forests which would affect these ecosystems for years 
to come, if not permanently. 
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Stress to eastern hemlock caused by HWA infestation is another 
major factor which may affect mycorrhizal diversity in Nova Sco-
tian forests. Many studies have noted that mycorrhizal diversity 
is altered by defoliation of host trees (Lewis et al. 2008, Baird et 
al. 2014), and insect-stress in eastern hemlock has been associ-
ated with reduced ECM abundance and diversity when compared 
with healthy stands (Baird et al. 2014, Caruso et al. 2021). In fact, 
one study found that mushroom production decreased by a third 
in defoliated conifer stands (Kuikka et al. 2003), while Schaeffer 
et al. (2017) observed a 14% decrease in mycorrhizal colonization 
of fine hemlock roots after only four years of HWA infestation. 
These results may occur because stressed trees with defoliated cano-
pies may be unable to photosynthesize at the same rate as healthy trees. 
This would reduce the amount of sugar that mycorrhizal partners 
receive by either directly limiting their supply or by reducing the 
number of fine tree roots which they use to interface with a host 
(Lewis et al. 2008). Mycorrhizal fungi can be very demanding, some-
times taking up to 25% of a tree’s photosynthetic sugars (Hobbie 
2006, Nehls 2008), and would be impacted negatively by a stressed or 
dying host tree. Interestingly, recent research suggests that host trees 
can actively redirect the flow of sugars to mycorrhizal partners which 
are less demanding (Druebert et al. 2009, Egli 2011). This implies that 
mycorrhizae which require greater amounts of sugar from their host 
may disappear first when their supply is cut off. However, it should 
be noted that some ECM are less host specific and can associate with 
several different tree species (Horton & Bruns 2001, Izzo et al. 2005). 
Some ECM genera, such as Russula, may even be able to survive 
without a host plant by reverting to a saprotrophic lifestyle (Štursová 
et al. 2014). Because of these advantages, these species of ECM, as 
well as generalist AM, would likely persist despite eastern hemlock 
decline due to HWA infestation. This may help explain why one recent 
experimental study conducted in Rhode Island, USA, did not detect 
any significant differences in fungal diversity between healthy and 
infested hemlock stands (Schaeffer et al. 2017). 

Changes in environmental variables caused by pollution and by 
the loss of eastern hemlock may provoke changes in fungal abun-
dance and diversity which can significantly influence mycorrhizal 
dynamics. Human activities over the past century, such as the use of 
combustion engines and excessive fertilization in agriculture, have 
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increased levels of nitrogen, ammonium, and carbon dioxide in the 
atmosphere. Although increased growth has been observed in cer-
tain fungi of the Paxillus, Lactarius, Thelephora, and Cortinarius 
genera (Egli 2011), excessive nitrogen and ammonium have been 
shown to decrease the growth, diversity, and mushroom produc-
tion of most ECM in forest ecosystems (Arnebrant 1994, Nilsson 
& Wallander 2003). In fact, it has been suggested that a decline in 
European ECM in the 1980s was caused by increased nitrogen in 
the air and soil (Arnolds 1991, Rühling & Tyler 1991). Contrarily, 
heightened carbon dioxide levels increased mycorrhizal coloniza-
tion of several conifer species in a study by Godbold et al. (1997), 
demonstrating that changes in atmospheric composition can have 
diverse effects on fungal communities. Aside from this, the loss 
of old-growth eastern hemlock and their shady canopies may alter 
the mushroom abundance in southwestern Nova Scotian forests by 
increasing light levels and temperature on the forest floor. Increasing 
photoperiod can positively affect mushroom production by increas-
ing the photosynthetic capacity of the host tree (Fortin et al. 2008). 
However, mushroom production is highly dependent on water avail-
ability (Egli 2011), so reduced soil moisture caused by the increase 
in temperature may significantly reduce mushroom abundance. 
This effect may be further exacerbated by the warming effects of 
climate change (Garbary & Hill 2021). Finally, altered soil chemis-
try caused by the replacement of eastern hemlock with other plant 
species may also change mycorrhizal composition. Eastern hemlock 
stands create uniquely acidic soils which are rich in organic material 
(Mladenoff 1987, Finzi et al. 1998a, b, Fassler et al. 2019). The loss 
of eastern hemlock and its shady canopies may alter cation cycling 
(Finzi et al. 1998b), reduce acidity, and increase rates of decomposi-
tion and nutrient cycling in the soil by increasing temperature and 
reducing soil moisture content (Jenkins et al. 1999, Cobb et al. 2006). 
Since different mycorrhizal fungi tend to prefer specific soil chem-
istries (Frelich et al. 1993, Finzi et al. 1998 a, b), changing these 
conditions is likely to alter which mycorrhizal species can thrive in 
the new forest. In total, while the overall direction of these changes 
may be difficult to predict, mycorrhizal diversity and mushroom 
production in southwestern Nova Scotian forests will likely be altered 
by the loss of eastern hemlock.

New research is helping to illuminate the complex relationships 
between fungi and their forest ecosystems (Egli 2011, Sapsford  
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et al. 2017). In this discussion, we have used available literature to pre-
dict the consequences of several influential factors – changing forest 
composition, loss of old-growth trees, increased insect stresses on 
trees, and altered environmental variables – on the mycorrhizal com-
munities of southwestern Nova Scotian forests following HWA-caused 
eastern hemlock decline. Replacement of eastern hemlock stands with 
mixed forest may increase mycorrhizal diversity and AM abundance 
despite the loss of hemlock-associated ECM, as more varied forests 
can support more diverse fungal communities (Cavard et al. 2011). 
However, loss of old-growth eastern hemlock will likely reduce ECM 
diversity significantly for the long-term and may particularly affect 
fungi preferring to associate with older trees (Birch et al. 2023).  
Further, stress induced by HWA feeding on eastern hemlocks will 
restrict mycorrhizal access to photosynthetic sugars from the host 
tree, likely reducing the diversity and abundance of ECM in hem-
lock stands (Lewis et al. 2008, Birch et al. 2023), but also giving an 
advantage to adaptable generalist mycorrhizae. Finally, increased 
nitrogen and ammonia levels and reduced water access in forest 
ecosystems may reduce diversity and mushroom production of 
ECM (Egli 2011), but increased light and carbon dioxide levels may 
have the opposite effect (Godbold et al. 1997, Fortin et al. 2008).  
Given this evidence, the profound changes in forest composition, 
stand age, tree stress levels, and environmental conditions – all 
significant influences on fungal diversity (Kranabetter & Kroeger 
2001, Rineau et al. 2010, Spake et al. 2016) – will likely reshape 
mycorrhizal communities in southwestern Nova Scotian forests 
as old-growth eastern hemlock declines due to HWA infestations.  
Current research suggests that the mycorrhizal community will shift 
in favour of AM and generalist ECM species since these fungi may 
adapt more easily to a rapidly changing forest. The overall effects of 
the discussed factors may even indicate a potential reduction in ECM 
diversity; however, fungal taxonomy and the relationships between 
mycorrhizae and their ecosystems are not yet fully understood (Birch 
et al. 2023) – because of this, the direction of mycorrhizal changes 
cannot be confidently predicted at this time. Indeed, more large-
scale and long-term studies are needed to truly gauge the full scope 
of mycorrhizal community dynamics in a changing environment 
(Orrego 2018). 
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SIGNIFICANCE

Mycorrhizal fungi provide critical services for forest health, so 
changes in the mycorrhizal community may have profound implica-
tions for forest ecosystems in southwestern Nova Scotia. In exchange 
for photosynthetic sugars, mycorrhizae increase the access of their 
host plant to important resources such as water (Smith & Read 1997), 
nitrogen (Clemmensen et al. 2015) potassium (Dominguez-Nuñez 
et al. 2016), and phosphorus (Wallander et al. 1997) by breaking 
down organic and inorganic materials in the environment (Van Bree-
men et al. 1997, Hobbie et al. 1999, Landeweert et al. 2001,Wal-
lander et al. 2001). They may also play a role in protecting host 
roots from harmful heavy metals in the soil (Adriaensen et al. 2004).  
While tree diversity is an important influence on mycorrhizal com-
position, mycorrhizal diversity can inversely influence forest com-
munity composition by promoting the growth of their preferred tree 
species (Booth 2004, Nara 2005). Furthermore, mycorrhizae may help 
to establish the next generation of their host tree species by trans-
ferring resources from the mature trees to their seedlings through 
common mycorrhizal networks (Orrego 2018), though it should be 
noted that this theory is contested in the scientific community and 
may not be sufficiently supported by evidence (Karst et al. 2023). 
Regardless, in these ways, forests and their mycorrhizal fungi are 
inextricably interdependent; changes in one partner may initiate a 
cascade of consequences that would affect the entire ecosystem, 
including forest regeneration. In the context of southwestern Nova 
Scotian forests, the decline of eastern hemlock due to HWA infesta-
tion and the subsequent changes in mycorrhizal diversity will likely 
result in the loss of rare hemlock-associated fungi such as stipitate 
hydnum species (Baird et al. 2013) and truffles (Stephens et al. 2017).  
This may also reduce the ability of the hemlock forests to estab-
lish new seedlings by limiting availability of compatible ECM and 
altering soil chemistry (Haskins & Gehring 2005). Soils which lose 
mycorrhizae have also been shown to lose the soil bacteria associated 
with those fungi (Hol et al. 2014), which would further alter nutrient 
availability and the suitability of the soil for hemlocks (Vendettuoli 
et al. 2015). Additionally, fungi are important food sources for small 
mammals such as flying squirrels, voles, and chipmunks (Luoma et 
al. 2003), and soil-dwelling organisms such as mites, collembola, and 
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many insects (Newell 1984, Moore et al. 1988, Shaw 1992, Heděnec 
et al. 2013), so altering mycorrhizal diversity may have consequences 
for the larger food web. All this evidence suggests that the HWA 
disturbance will irreparably alter both the mycorrhizal and forest 
communities of southwestern Nova Scotia, unless immediate action is 
taken to protect old-growth eastern hemlock forests and their unique 
associated ecosystems. 

CONCLUSIONS

The old-growth eastern hemlock ecosystems of southwestern Nova 
Scotia are expected to experience major disturbances in the coming 
years due to the recent arrival of invasive HWA. Based on literature 
regarding the influence of forest composition, tree age, insect-induced 
tree stress, and environmental variables on mycorrhizal fungi, we 
expect the diversity of mycorrhizae in southwestern Nova Scotian 
Wabanaki forest to change significantly with the loss of old-growth 
eastern hemlock. We also predict that the mycorrhizal community 
composition will shift toward more generalist ECM fungi and more 
AM fungi as mixed forest replaces previously hemlock-dominated 
stands. The profound consequences of these changes will perma-
nently alter the forest ecosystems of southwestern Nova Scotia unless 
immediate action is taken to conserve old-growth eastern hemlock 
ecosystems.
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