
2005 NSIS Graduate Student
Special Prize for High Merit

A COMPARISON OF METHODS FOR MODIFYING THE
PARTIAL SINGULAR VALUE DECOMPOSITION IN LATENT

SEMANTIC INDEXING

JANE E. TOUGAS
Faculty of Computer Science

Dalhousie University
6050 University Avenue

Halifax, Nova Scotia B3H 1W5

The tremendous size of the Internet and modern databases has made efficient
searching and information retrieval (IR) important. Latent semantic indexing (LSI)
is an IR method that represents a dataset as a term-document matrix. LSI uses a
matrix factorization method known as the partial singular value decomposition (PSVD).
Calculating the PSVD of a large term-document matrix is computationally expensive.
In a rapidly expanding environment, a term-document matrix is altered often as new
documents and terms are added. Recomputing the PSVD of the term-document matrix
each time these slight alterations occur can be prohibitively expensive.

Folding-in is one method of adding new documents or terms to an LSI database;
updating the PSVD of the existing LSI database is another. The folding-in method is
computationally inexpensive, but may cause deterioration in the accuracy of the PSVD.
The PSVD-updating method is computationally more expensive than the folding-in
method, but better maintains the accuracy of the PSVD. Folding-up is a new method
that combines folding-in and PSVD-updating. Folding-up is faster than either recomputing
the PSVD or PSVD-updating, but avoids the degradation in the PSVD that can occur
when the folding-in method is used on its own.

La taille incroyable d’Internet et des bases de données modernes a fait en sorte
que la recherche efficace d’informations est maintenant importante. L’indexation par
sémantique latente (ISL) est une méthode de recherche d’informations qui représente un
jeu de données comme une matrice document-terme. L’ISL comprend l’utilisation d’une
méthode de factorisation matricielle connue sous le nom de décomposition partielle en
valeurs singulières (DPVS). Le calcul de la DPVS d’une grande matrice document-terme
est coûteux sur le plan des calculs. Dans un environnement en expansion rapide, une
matrice document-terme est souvent modifiée à mesure que de nouveaux documents
et termes sont ajoutés. Le recalcul de la DPVS de la matrice document-terme chaque
fois qu’une légère modification est apportée peut devenir très coûteux.

L’intégration (folding-in) est une méthode pour ajouter de nouveaux documents ou
termes dans une base de donnée ISL, et la mise à jour de la DPVS de la base de
données ISL existante en est une autre. La méthode d’intégration est peu coûteuse
sur le plan des calculs, mais elle peut entraîner une perte d’exactitude de la DPVS. La
méthode de mise à jour de la DPVS est plus coûteuse sur le plan des calculs, mais
elle permet de mieux préserver l’exactitude de la DPVS. La méthode d’intégration et de
mise à jour (folding-up) est une nouvelle méthode qui combine l’intégration et la mise
à jour de la DPVS. Cette méthode est plus rapide que le recalcul ou la mise à jour de
la DPVS, mais elle permet d’éviter la perte d’exactitude de la DPVS qui peut survenir
quand seule la méthode d’intégration est utilisée.

PROC. N.S. INST. SCI. (2006)
Volume 43, Part 2, pp. 211-218

E-mail: tougas@cs.dal.ca

TOUGAS212

INTRODUCTION

The expansion of both the Internet and modern databases has sparked
an increased interest in methods for the efficient retrieval of information.
Latent semantic indexing (LSI) is an information retrieval (IR) method that
relies heavily on methods from numerical linear algebra (NLA). LSI thus
combines two very different, although equally interesting, fields of study.

The efficient retrieval of textual information is hampered by the fact that
many words have more than one meaning (they are polysemous). When a
polysemous word is used in a search query, irrelevant documents about the
word’s other meaning(s) may be retrieved. A further complication arises from
the fact that many words have similar meanings (they are synonymous).
When a word that has a synonym is used in a search query, relevant docu-
ments containing the synonym, but not the specific word used in the query,
may be overlooked. LSI uses a matrix factorization method known as the
partial singular value decomposition (PSVD) in an attempt to reduce the
retrieval problems caused by polysemy and synonymy.

LSI uses a mathematical approach to examine a document collection as
a whole and determine which documents contain many of the same words.
The more words documents have in common, the more closely related they
are considered to be. When a search query is made, documents containing
the words used in the search are returned, but so are those that are closely
related to these documents. This allows the retrieval of documents that do
not contain all or even any of the words given in the search query (Berry &
Browne 1999, Yu et al. 2002).

The mathematical approach LSI uses is known as the vector-space model
(Berry & Browne, 1999, Berry et al. 1999, Salton & McGill 1983). This ap-
proach creates a term-document matrix in which there is a vector for each
document, with as many entries as there are semantically significant terms
in the documents. The term-document matrix is essentially a table of num-
bers with, as already noted, a column (vector) for each document, and a
row for each term. This matrix is of size t x d, where t denotes the number
of terms, and d the number of documents. Refer to this matrix as A, and
to each entry as a

ij
 , where 1 ≤ i ≤ t and 1 ≤ j ≤ d. Each entry indicates the

presence or absence of a particular term in a particular document; this may
be a weighted frequency that reflects the importance of each term in each
document. Search queries are also represented as t-dimensional vectors.
The query vectors are projected into the term-document matrix using the
PSVD. The vectors of documents and queries with many terms in common
will be close together in the vector space, whereas those with relatively few
terms in common will be far apart. The cosine of the angle between two
vectors is commonly used as a measure of the similarity of the vectors.
The cosine of the angle between two vectors that are close together will
be large, whereas the cosine of the angle between two vectors that are far
apart will be smaller.

213GRADUATE STUDENT SPECIAL PRIZE FOR HIGH MERIT

Problem and motivation
Even using the most advanced NLA methods, calculating the PSVD of a

matrix is an extremely expensive computation. In LSI, most of the computation
time is spent in calculating the PSVD (Berry et al. 1999, Berry et al. 1995).
In a dynamic environment, such as the Internet, the term-document matrix
is changed often as new documents and terms are added. Recalculating
the PSVD of the matrix each time such changes occur can be prohibitively
expensive. Traditionally, LSI uses a process known as folding-in to modify
the PSVD. Unfortunately, folding-in results in a trade-off between efficiency
and accuracy; although this method is much faster than recomputing the
PSVD, it is also much less accurate. Updating the PSVD is a more recent
approach (Zha & Simon 1999) that offers a compromise. Updating the PSVD
is a slower process than folding-in (although it is much faster than recomput-
ing), but unlike folding-in, it results in little or no loss of accuracy.

The purpose of this paper is to illustrate that updating the PSVD is more
accurate than folding-in, and also to introduce a new method, folding-up,
that is a combination of folding-in and updating the PSVD. Folding-up is an
attractive option because it offers a significant improvement in computation
time when compared to either recomputing or updating the PSVD, and yet
it results in little or no loss of accuracy.

Background
In order to understand the PSVD, it is helpful to understand the singular

value decomposition (SVD). The SVD is a matrix factorization that can be
used to capture the salient features of a matrix. Given a matrix A of size t x
d, its SVD is written as A = UΣVT , where U is a size tx t matrix, Σ is size t x
d, and V is size d x d. U and V contain the left and right singular vectors of
A respectively. When A is a term-document matrix, U represents the term
vectors and V represents the document vectors. The matrix Σ has non-zero
entries only on the diagonal. These diagonal entries, denoted σ

j
 for j = 1,

2, ..., min (m,n) and arranged in non-increasing order, are known as the
singular values of matrix A. The number of non-zero singular values of a
matrix is known as its rank, r (see Fig 1).

Fig 1	 The singular value decomposition (SVD) of A.

TOUGAS214

An alternative way to represent the SVD is as the sum of r rank-one
matrices A = Σ

j=1
 _j u

j
v

j
 , where u

j
 and v

j
 are the jth columns of matrices U

and V, respectively. This representation of the SVD allows the formation of
lower-rank approximations of A. Let matrices U

k
 and V

k
 be the first k columns

of U and V respectively, and let matrix Σ
k
 be the leading submatrix of Σ with

k rows and k columns. A
k
 = U

k
Σ

k
V

k
 is a lower-rank approximation of A, where

0 ≤ k < r. This is the partial SVD (PSVD) of A. This approximation can be
used to reduce the dimension of the term-document matrix, while eliciting
the underlying structure of the data. In LSI, the effect of this dimensional
reduction on the data is a muting of the noise caused by synonymy and an
enhancing of the latent patterns that indicate semantically similar terms. This
means that A

k
 can actually be a better representation of the data than the

original term-document matrix. The number of terms to keep in the reduced
term-document matrix is still open to debate, but experiments indicate that
values of k between 100 and 300 give the best results (Berry et al. 1995).
This tremendous dimensional reduction, given the potentially huge size of
the term-document matrix, demonstrates the power of the SVD as a method
of data compression (see Fig 2).

Fig 2	 The partial singular value decomposition (PSVD) of A.

METHODS

Let A = U
k
Σ

k
V

k
 be the PSVD of the term-document matrix of size t x d,

where t is the number of terms, d is the number of documents, and k is the
number of dimensions used in the PSVD. Let D be the t x p term-document
matrix containing the document vectors to be appended to A, where p is
the number of new documents.

The folding-in process projects D into the k-dimensional space with a
matrix multiplication: D

k
 = DTU

k
 Σ

k
-1 The p x k projection D

k
 is then folded-in

to the existing PSVD of A by appending it to the bottom of V
k
. This gives

the modified matrixVˆ
k
 of size (d + p) x k. It is important to note that U

k
 and

Σ
k
 are not modified in any way with this method. As more and more docu-

ments are folded-in, the term-document representation of the document
collection, U

k
Σ

k
Vˆ

k
, becomes less and less accurate, because U

k
 and Σ

k
 are

r T

T

T

215GRADUATE STUDENT SPECIAL PRIZE FOR HIGH MERIT

not being modified to reflect the addition of the new documents. Folding-in
terms follows a similar process.

Updating the PSVD when the term-document matrix changes is a more
complicated process than folding-in. Unlike folding-in, which modifies only
the matrix Vk, updating modifies each of the matrices U

k
, Σ

k
, and V

k
. The

end result (in the absence of rounding off errors) is the exact PSVD of the
modified term-document matrix, without the expense of recomputing it from
scratch. Although this is computationally more expensive than folding-in, it
provides a more accurate representation of the modified document collec-
tion. Updating terms rather than documents is done in a similar manner.

Folding-up is new hybrid method that uses a combination of folding-in
and updating to modify the PSVD of the term-document matrix when docu-
ments (or terms) are added. The idea is to begin by folding-in documents,
but then discard the changes made by folding-in, and updating before the
accuracy of the representation degrades significantly. The process has
the merit of saving the document vectors that are being folded-in between
updates; it repays this cost with a saving in computation time, coupled with
the precision advantages of updating. If no updates have been made, the
current term-document matrix is the initial matrix, otherwise it is the last
updated term-document matrix. Once the number of documents that have
been folded-in reaches a pre-selected percentage of the current term-docu-
ment matrix, the vectors that have been appended to Vk during folding-in
are discarded. The PSVD is then updated to reflect the addition of all of the
document vectors that have been folded-in since the last update. These
document vectors are then discarded. The process then continues, fold-
ing-in until the next update.

Experiments.
The experiments are run using Matlab Release 13 on an Ultra3 SunFire

V880 (Solaris 8 operating system). The MEDLINE text collection (Cornell
SMART System [ftp://cs.cornell.edu/pub/smart]) containing 1033 docu-
ments and 30 queries is used. Removing semantically insignificant terms
gives a term-document matrix A

med
 of size 5735 _ 1033. The measure of

similarity is the cosine of the angle between query and document vectors.
For each example, the term-document matrix is incrementally updated with
document vectors until its column space has approximately doubled. The
average precision for the methods used in each example are compared.
In each case, the average precision for each of the queries at 11 standard
recall levels (0%, 10%, ···, 100%) is averaged to produce the overall average
precision at each increment of each experiment. For each method used,
the average precision is plotted at each of these increments, starting with
the initial term-document matrix. All PSVDs are computed using the Mat-
lab function svds, with k = 125 for the MEDLINE collection, where k is the
number of singular values and corresponding left and right singular vectors
computed. The updating method is based on a method introduced by Zha
and Simon (1999). For the sake of brevity, the experiments described use

TOUGAS216

only the document updating method. Note that similar results are produced
using the term updating method.

RESULTS

Example 1
A

med
, size 5735 _ 1033, is partitioned such that the first 533 columns are

used as the initial term-document matrix, and the remaining columns are
added incrementally, in groups of size 10. The average precision is compared
for four methods at each increment: recomputing the PSVD, folding-in, up-
dating, and folding-up. For the folding-up method in this example, updates
occur when the number of documents folded-in reaches approximately
8% of the size of the initial matrix for the first update, and of the updated
matrix thereafter. As expected, Fig 3 shows that the average precision for

Fig 3	 Comparison of the average precision of four methods for the MEDLINE collection,
with 500 documents added in 50 groups of 10.

folding-in deteriorates rapidly. The average precision for updating does not
begin to deteriorate until the initial matrix is more than one and a half times
its original size, and the increments are less than 1.25% of the size of the
matrix. Although the deterioration is slight, it does indicate that doing many
updates that are very small relative to the size of the matrix may eventually
have a negative affect on the average precision. However, the savings in
computation time compared to recomputing, shown in Table 1, may more
than compensate for this small deficiency; in this case, updating is more
than 100 times faster than recomputing. Fig 3 shows that in this example
folding-up actually outperforms the other methods for much of the graph,
even though it is faster than either recomputing or just updating. See Table
1 for a comparison of CPU times.

217GRADUATE STUDENT SPECIAL PRIZE FOR HIGH MERIT

Example 2
A

med
, size 5735 _ 1033, is partitioned such that the first 533 columns are

used as the initial term-document matrix, and the remaining columns are
added incrementally, in groups of size 25. The average precision is compared
for four methods at each increment: recomputing the PSVD, folding-in, up-
dating, and folding-up. For the folding-up method in this example, updates

Table 1	 Comparison of total CPU times (seconds) for the MEDLINE collection with 500
documents added in groups of 10 and in groups of 25.

	

Method		 CPU time	 CPU time

		 Increments of 10	 Increments of 25

	 Recomputing	 5001.60	 2045.80
	 Updating	 43.07	 22.33
	 Folding-in	 1.35	 0.75
	 Folding-up	 15.76	 13.14

Fig 4 	 Comparison of the average precision of four methods for the MEDLINE collection,
with 500 documents added in 20 groups of 25.

occur when the number of documents folded-in reaches approximately
14% of the size of the initial matrix for the first update, and of the updated
matrix thereafter. As in Fig 3, Fig 4 shows that the average precision for
folding-in deteriorates rapidly. The average precision for updating does not
deteriorate, and is at times even slightly better than that for recomputing the
PSVD. These results suggest that updating in larger increments, relative to
the size of the matrix, can give optimal average precision. Folding-up again
outperforms the other methods for some parts of the graph, while taking less
computation time than either recomputing the PSVD or simply updating it.
Table 1 gives a comparison of the CPU times for the methods.

TOUGAS218

CONCLUSIONS

LSI relies heavily on the PSVD of the term-document matrix representa-
tion of a document collection. Calculating the PSVD of large term docu-
ment matrices is computationally expensive, therefore when documents
(or terms) are added to an existing dataset, it is beneficial to update the
existing PSVD to reflect these changes. Examples 1 and 2 illustrate that
updating the PSVD of the term-document matrix each time changes are
made to the document collection is not only much faster than recomputing
the PSVD, but also gives better average precision than the traditional method
of folding-in documents. Folding-up, a new method that is a combination of
folding-in and updating, gives better average precision that folding-in, with
less computation time than the updating method.

Acknowledgements. The work for this paper by JET was supported by NSERC
Canada and the Killam Trust. The research for this paper was done in collaboration
with Henry Stern, and supervised by Dr. Raymond J. Spiteri.

REFERENCES

Berry MW, Browne M (1999) Understanding search engines: mathematical
modeling and text retrieval. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA

Berry MW, Drmac Z, Jessup ER (1999) Matrices, vector spaces, and information
retrieval. SIAM Rev 41(2):335–362(electronic)

Berry MW, Dumais ST, O’Brien GW (1995) Using linear algebra for intelligent
information retrieval. SIAM Rev 37(4):573–595

Salton G, McGill MJ (1983) Introduction to modern information retrieval. McGraw-
Hill, New York, NY

Yu C, Cuadrado J, Ceglowski M, Payne JS (2002) Patterns in unstructured data:
discovery, aggregation, and visualization. Presentation to the Andrew W. Mellon
Foundation, New York, NY

Zha H, Simon HD (1999) On updating problems in latent semantic indexing. SIAM
J Sci Comput 21(2):782–791

	

