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ABSTRACT

Our objective in this work is to model First Appearance Time (FAT) of 
flowering in five species of plants in Nova Scotia, Canada, as a function of 
climatic variables (such as temperatures) and geographical factors (such as 
latitude). Dr. Alexander H. MacKay was the superintendent of public schools 
in Nova Scotia from 1891-1926. Beginning in 1896 MacKay instructed all 
the school teachers of Nova Scotia to have their students collect data on 
the first appearances of numerous plants, animals, and seasonal events, and 
then summarized the data himself. The summaries of the phenological data 
collected in this massive citizen science project were then published in the 
Proceedings of the Nova Scotian Institute of Science in a consistent fashion 
over the period 1901-1923. We analyze five species from the summary 
MacKay data for Nova Scotia, producing a model for First Appearance Time 
of flowering for each, as a function of latitude, longitude, mean monthly 
temperatures for many months, and sea ice off the coast of Newfoundland 
in winter months. Our model produces good agreement between predicted 
FATs and those FATs we find in the literature.

Key Words: 1901-1923, Alexander MacKay, First Appearance Time 
(FAT), flowering, latitude, longitude, mean monthly temperatures, Nova 
Scotia, sea ice.

INTRODUCTION

“Seasonal timing of biological events, phenology, is one of the 
strongest bio-indicators of climate change.” (CaraDonna et al. 2014) 
Our purpose is to use phenological data collected and summarized 
by Dr. Alexander MacKay to model First Arrival Time (FAT) of  
flowering of several species of plants in the early 1900s in Nova 
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Scotia. Having obtained a model, we use it to predict a change in 
FAT based on climatic variables (e.g. temperatures, sea ice), sug-
gesting that a consequence of climate change is phenological change, 
and allowing us to guess how further changes in climate will affect 
the phenology of these flowering species of plants. We also use our 
model to compare our predictions to data and models on FATs from 
the late 20th century and early 21st century. Studies showing signs 
of changes in the four seasons in response to climatic change are 
becoming quite common (Garbary 2018; Santor, et al. 2018); this is 
our contribution.

This paper is certainly an homage to Dr. Alexander MacKay, to 
whom we are indebted for our data. He was a beloved member of the 
Nova Scotian Academy of Sciences and a brilliant scientist in his 
own right. Appointed Superintendent of Education for Nova Scotia 
on November 4th, 1891, he retired nearly 35 years later, on July 31st, 
1926. He left an indelible mark on Nova Scotia’s public educational 
system. “Under his able administration not only the [Pictou] Academy, 
but the whole province, was coordinated into one efficient system 
of education, in imitation of Ontario and American models.” (Wood 
1994) “Under Principal MacKay’s strong administration the Academy 
made rapid strides. It became celebrated throughout the province and 
far beyond its limits. Students flocked in from all quarters until there 
was not room enough to receive.” (MacPhie 1914) Perhaps MacKay’s 
disposition had something to do with his popularity: “Only once 
did I hear him speak with unwonted warmth or perhaps anger, and 
that was when an educated man seemingly tried to demonstrate to a 
large audience that the world might be flat!” (Piers 1930) We include 
a photograph of MacKay (Fig 1), a photo favored by Harry Piers, 
author of MacKay’s “scientific obituary” (ibid).

MacKay himself described the history of the phenological work in 
Canada, and presented the state of affairs in 1897, when the contribu-
tions of his students began to appear in the summaries: 
	 In 1890, Section IV of the Royal Society of Canada passed the 

following resolution: ‘That the various Natural History and 
Scientific Societies affiliated with the Royal Society be requested 
by it to obtain accurate records in their individual localities 
of meteorological phenomena, dates of the first appearance of 
birds, of the leafing and flowering of certain plants, and of any 
events of scientific interest for collation and publication in the 
Transactions of the Society.’... By 1897 the idea was extensively 
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taken up in the public Schools of the province of Nova Scotia, the 
pupils of a whole school section or district being the observers, 
under the direction and criticism of the teacher. The observations 
were a part of the prescribed ‘Nature Studies’ in all schools, 
although the recording of them in the Phenological Records of 
the locality and the sending of a duplicate of the observations 
to the Inspector to be transmitted to the Education Office, were 
entirely voluntary. While the schedule of the Botanical Club 
had a list of about sixty objects for the observation of their first 
occurrence each season, the schedule of the public schools 
had over one hundred objects on its list, with instructions and 
a column for the observation of (1) the first occurrence and (2) 
when each began to be common. Over two hundred fairly well 
filled schedules were sent in from as many localities throughout 
the province. (MacKay 1902a)

MacKay gave us our marching orders from across the years:
	 ...we may consider a phenological date to be a sort of mathemati-

cal function of variables, several of which are already being 
very systematically and accurately observed and recorded by 
the meteorological departments of most countries, such as the 
variations of temperature, of atmospheric pressure, sunshine, 
precipitation. Then there are local constants, such as latitude, 
elevation, slope, proximity of bodies of water, and character 
of the soil. All of these influences affect the phenological date, 

Fig 1	 This photograph, chosen by the author of MacKay's "scientific obituary" 
(Henry Piers), is one personally sent to him with MacKay's handwritten 
inscription ("Yours very truly"). 
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and conversely the date may be considered as a summation or 
integration of all these and other more or less unknown elements. 
(ibid, p. 76).

Note that MacKay mentions only latitude: we discover here that 
longitude is nearly as important. Otherwise, his suggestions are 
spot-on: if we had the information he suggests at our fingertips, we 
would include it. As it was, we used what was available.

His observations of discrepancies in phenochrons can be considered 
a second charge to us:
	 An interesting irregularity in the phenochrons of the different 

counties is shown in nearly every part of this table. Their order 
is not parallel in the different counties. Very often it is reversed. 
As the phenochrons are averages of ten observations, it cannot 
be laid altogether to the charge of defective observation. The 
rarity of certain species in certain counties, or in the districts in 
which the observations were made, tends to make the phenochron 
later, for the plants may be in flower several days before they 
may be met with. But the character of the soil, the elevation, 
the slope, etc., must have had some influence. And, then, may it 
not be possible that the same species may develop a tendency 
to an earlier or later maturing in different regions? These are 
questions that careful future observations may help to answer. 
(ibid, p. 81).

It is fascinating to hear his mature scientific voice in his concern 
for using averages to arrive at stable estimates; in his theorizing about 
the influence of low sampling, and environmental influences; and in 
proposing that he and his students would be laying the groundwork 
for future scientists.

MacKay presented his phenological study strategy in his 1901 
report on the phenology of Nova Scotia (MacKay 1903):
	 I present herewith a summary of the phenological observations 

made in about 450 of the public schools of the Province of Nova 
Scotia, each county being represented by a greater or less pro-
portion of observers.... The observers are specially directed to 
the determination of two dates (phenochrons) – one for the first 
appearance of the event (leafing, flowering, ripening of fruit, 
etc.), the other for the date when it may be said to be ‘becoming 
common.’

For the years 1901 to 1923 (with the exception of 1910 for which 
we were unable to find the data), we found and digitized published 
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summaries of the observations made by the public school children 
of Nova Scotia from the Proceedings of the Nova Scotian Institute 
of Science. The printed form the teachers and students used in indi-
vidual schools was published in 1902 (MacKay 1902b), along with 
a report (ibid, pp. 58-63) on difficulties associated with compiling 
those regional reports of the raw data into Nova Scotian summaries 
in the case of 1901.

As for MacKay’s scientific legacy, those who indexed the Pro-
ceedings of the Nova Scotian Institute of Science report that “[t]he 
phenological data, collected over 31 years by Dr. A.H. MacKay, are 
a major contribution to Canadian science....” (Nova Scotian Institute 
of Science 1992, p. 150). MacKay collected data Canada-wide in the 
early reports, from a handful of observers across the Commonwealth. 
The value of his work was recognized in his own time: The President 
of the Nova Scotian Institute of Science said in his address of March 
14, 1898 that MacKay’s phenological observations “...may lead to 
some important generalizations regarding the relation of organized 
life to latitude and other climatic conditions.” (MacKay 1899, p. ii) 
Note again the emphasis on latitude only – we will find that longitude 
is perhaps equally important.

Our primary objective here, however, is to prove the President cor-
rect in his assessment: MacKay’s observations do lead to important 
generalizations regarding the relation of life to climate. 

MATERIALS AND METHODS

Data collection and processing 
The data were obtained from summaries of MacKay’s phenological 

data published in the Proceedings of the Nova Scotian Institute of 
Science (MacKay 1903), and every year thereafter until 1923, with 
the exception of 1910. We analyze five species from the summary 
data for Nova Scotia from the period 1901-1923, species chosen for 
special consideration by MacKay himself. After an initial cleaning 
we imputed missing values (using a method we describe), after which 
some regions were combined (described below). Once the data were 
deemed clean, we proceeded to the modeling step.

The original raw data were collected by school teachers of the 
more than 1400 schools which MacKay oversaw as superintendent of 
public schools in Nova Scotia. This was one of the earliest and largest 
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citizen science projects ever created. Not every school participated 
every year, but MacKay strongly encouraged it, and for more than 25 
years MacKay oversaw not just the collection, but also the analysis 
of the data. His summaries were published every year from 1901 
to 1923 (with the exception of 1910); his summaries were based on 
the summaries of colleagues from each of the 9-11 regions of Nova 
Scotia (the number of these districts varied over time).

Descriptions of the difficulties encountered in the regional sum-
marization and the process of data collection itself (including the 
forms the teachers used) were published in the Journal of Education 
(MacKay 1902c). MacKay and his collaborators were very concerned 
about accuracy, stating:
	 [C]are must be exercised in selecting schedules, the observations 

of which appear to have been carefully made, neglecting any 
which give reason for doubt, when selecting for summation on 
the form within. Great care must also be exercised in copying 
the figures and entering them, so that no slip may occur. Every 
entry must be checked. One slip may spoil the effect of all the 
accurate numbers entering into the summation. In like manner, 
great care has to be taken in adding and averaging the figures; 
and for this purpose every sum should be done twice in reverse 
order, so as to give absolute confidence in the accuracy of the 
work. (MacKay 1903, p. 490).

While we had access to the school-level raw data (digitized by 
Fenech, et al. 2005) from the data publicly archived in ledgers in 
the Nova Scotia Museum of Natural History, Nova Scotia (Austen 
2000), we chose to limit ourselves to the summary data published 
by MacKay. Clearly there were issues with the raw data which were 
thoroughly and carefully addressed by MacKay’s regional compilers; 
and while we had access to over 100 variables featured on the sum-
mary reports, we chose a small subset to work with. MacKay and 
his collaborators also carefully chose a subset of the data, that being 
of good quality, and we know that they made a conscious culling 
of the data to avoid including data poorly or improperly collected, 
fabricated, or otherwise suspect:
	 The various points for consideration in choosing Schedules are 

a fair distribution of the Stations over the Belt, the number and 
accuracy of the observations, the sex and temperament of the 
observer, the neatness of the work, the method of stating dates 
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and in some cases the Compiler’s personal knowledge of the 
observer. (MacKay 1902c, p. 59).

The compilers of the data from each of the regions often gave 
informative (and sometimes amusing) examples of the trials and 
tribulations of data collection and reporting (ibid, pp. 60-63). By 
using the summary data, carefully scrutinized and cleaned by reli-
able colleagues of MacKay, we avoid some of the noise associated 
with the raw data. Nonetheless it is certain that we inherit some of 
the data problems of citizen science. Some interesting and/or amus-
ing examples from individual compilers follow (many more can be 
found in that reference):

It would appear in many cases that the observer has given the 
date of his first seeing a plant instead of the actual date of its first 
appearances in a locality. Frequently the date ‘when becoming 
common’ is given the same as ‘when first seen’. In such cases the 
former is probably the correct one.
•	 One or two observations are obviously guesses. I strongly suspect 

that they were all filled out about the close of the term, possibly 
from memory or aided by the pupils.

•	 G. is very early with 55, 57, 60, in Musquodoboit Harbor, but as 
Rev. Mr. Rosborough is there and instructs the teachers often 
in Botany, I accept them.

•	 Unusually early dates are often given, based upon plants grow-
ing in exceptionally favourable situation. 

We ourselves found instances for which the “when common” date 
was earlier than the “first seen” date. We found other values which 
appeared to be outliers, perhaps of the sort described above (values 
occurring early for the wrong reasons – some teacher wanting to be 
first, or basing the date on a plant growing in exceptional circum-
stances). We managed to handle these problems with what we felt 
were reasonable strategies. For example, sometimes an outlying data 
value appeared suspiciously similar to a value in a column or row 
nearby (perhaps an error at the time of printing). In that case, we 
could use the averages (which were also frequently given) to check: 
if the data didn’t give the proper average, we could assume that an 
error had been made in that suspicious position, and fix it.

Data Subsetting
In his 1901 report (MacKay 1903), MacKay presents a graphic 

(we’ll call it “the 1901 graphic”, Fig 2) of the first appearances of 
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Fig 2	 In his 1901 report (MacKay 1903), MacKay presents this graphic of the 
first appearances of mayflower, strawberry, apple, lilac, and blackberry 
(summary data rows 3, 13, 51, 57, and 30, as noted in the report (p. 495). 
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mayflower, strawberry, apple, lilac, and blackberry (summary data 
rows 3, 13, 51, 57, and 30, as noted in the report, p. 495). The report 
includes it along with this remark:
	 A plate of graphs showing the relation between the flowering 

phenochrons in each region of the province of Nova Scotia for 
the dates ’when first seen’ and ‘when becoming common’ is 
given on page 496. ’When becoming common’ must always be 
a matter of personal judgement; so that the general conformity 
of the five pairs of curves for the flowering of the Mayflower, 
Strawberry, Apple, Lilac, and Blackberry, on the said plate is 
very interesting.

In the Report from 1900, MacKay noted:
	 ...the curves for the three years are to a great extent conformable, 

which demonstrates the important effect of the position of each 
county. The variations from conformability, are probably due 
to the differences in the winds and sunshine. (MacKay 1901).

This graphic was obtained from the summary data, a subset of 450 
of the more than 500 data sets submitted by his many teachers that 
year. The regions are sorted by latitude: MacKay’s evident supposi-
tion was that first appearances would come later the more northerly a 
locality. We wonder if he chose those variables because they spanned 
the season, and don’t generally overlap – so that the distinction 
between each of the species will be (generally) clear. We haven’t 
been able to find an explanation for his choice. However, given that 
MacKay felt that these five species are important enough to focus on, 
we too decided to focus on them. They are well-represented across 
the years (with minor exceptions). It may be that he suspected that 
they would show the most dramatic results, or that they were easiest 
for his students to identify (so were likely to be the most accurately 
represented). At any rate, the analyses in this paper pertain only to 
five species that MacKay chose for the 1901 graphic: mayflower, 
strawberry, apple, lilac, and blackberry.

Combining Regions
Another important problem that we confronted was that, over 

the years, some regions were split up, and others were joined to-
gether: MacKay’s regions (“phenochrons” – Fig 3) varied over time. 
For example, some years combined regions 9 and 10 to create one 
data point. In other years, region 6 was split into two separate parts, 
6A and 6B. These inconsistencies lead to problems when it comes to 
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Fig 3	 From the Phenology Report of 1909: “Each province may be divided into its 
main climatic slopes or regions which may often not be coterminous with 
the boundaries of counties. Slopes, especially those to the coast, should be 
subdivided into belts such as (a) the coast belt, (b) the low inland belt, and 
(c) the high inland belt.” 

Fig 4	  Map of the Terrestrial Ecosystems and Ecodistricts of Nova Scotia (Webb 
and Marshall 1999), obtained from http://sis.agr.gc.ca/cansis/publications/
surveys/ns/nsee/index.html. 

data analysis. We elected to create a standard set of nine regions to 
utilize for analysis. Regions 1-5 and 7-8 are identical to those created 
by MacKay. Region “6” is identical to MacKay’s region 6 in most 



141A CLIMATE CHANGE SIGNAL IN NOVA SCOTIA

cases. Where there is a 6A and 6B in MacKay’s original data set, 
our region “6” is a combination of 6A and 6B. In all cases, regions 
9 and 10 were combined to create one region. In the cases where 
MacKay combined regions 9 and 10, this last region is identical to 
the original. The configuration of the final data set used is shown 
in Table 1, and we describe in that table how the regions were aver-
aged together.

Modern day analysis (Webb and Marshall 1999) suggests that the 
ecosystems of Nova Scotia should look more like the subdivisions 
of Fig 4.

Data Imputation Using the Singular Value Decomposition 
(SVD)

The summary data we study consists of five species, reported in 
nine regions, over 23 years. We can think of each year’s data as a  
matrix: five rows for the five species, and nine columns for the nine 
regions. Data from 1910 was “accidentally misplaced” (MacKay 
1911), and MacKay’s report from that time period is discouraging 
(MacKay 1909). It appeared for a time that the phenological report-
ing might cease; however, it recommenced in 1911, and continued 
unabated from then until 1923.

Missing or Corrupt Data in a Matrix
One small challenge was a dozen or so missing data values: several 

years were missing values for one or more species. For that, we re-
quired a method of imputation (estimation), and we chose a method 
based on the Singular Value Decomposition (SVD). A glance at the 
1901 graphic strongly suggests that the five species’ FATs are syn-
chronized; they are in lockstep, to a certain degree. Clearly there is 
some underlying similarity in the graphics: as MacKay remarked, 
“...the general conformity of the five pairs of curves for the flowering 
of the Mayflower, Strawberry, Apple, Lilac, and Blackberry, on the 
said plate is very interesting.” (MacKay 1903).

We suspect that the similarity is a consequence of species’ 
relatively similar response to their geographical location (longitude 
and latitude). There is a certain one-dimensional commonality to 
their behavior, and the SVD is a good tool for identifying this one-
dimensional commonality. In what follows we turn this idea on its 
head, however, and use the requirement of commonality to estimate 
the missing values using the SVD.
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Table 1	 This table lays out how regions were combined: 1) “Original” means that 
the new region is identical to the one created by MacKay. For 6A and 
6B, it means that the regions were not originally split into two parts. For 
regions 9 and 10, this means that the regions were combined by MacKay, 
and were therefore not changed for the final data set. 2) In cases where 
we had to combine regions, the weighted ratios are given. 2a) If the ratio 
is “given,” we were able to find the number of reports for each region and 
use that ratio to weight the data points. For example, in 1917, there were 
six reports from 6A and fifteen reports from 6B. Therefore, to create a 
region “6,” A was weighted by six and B was weighted by fifteen. 2b) If 
the ratio is “estimated,” there was no information given on the number 
of reports from each region. In order to create a ratio to use, we used 
the total ratio of reports from the years in which a ratio was given. For 
regions 6A and 6B, the ratio is combination of the years 1913-1919. For 
regions 9 and 10, the ratio is a combination of the years 1903, 1906, and 
1918. In some cases, the data points given for regions were the same, so 
the regions ended up being given equal weight.

Year	 Regions 6A and 6B	 Regions 9 and 10

1901	 Original	 Weighted 14/27—estimated
1902	 Original	 Weighted 14/27—estimated
1903	 Original	 Weighted 4/12—given
1904	 Original	 Weighted 14/27—estimated
1905	 Original	 Weighted 14/27—estimated
1906	 Original	 Weighted 1/6—given
1907	 Original	 Original
1908	 Original	 Original
1909	 Original	 Original
1910		
1911	 Original	 Weighted 14/27—estimated
1912	 Original	 Original
1913	 Original	 Original
1914	 Original	 All same—weighted equally
1915	 Original	 Same except strawberry—weighted 14/27
1916	 Original	 Original
1917	 Weighted 6A/15B--given	 Original
1918	 Weighted 5A/13B--given	 Original
1919	 Original	 Original
1920	 Weighted 3A/7B--estimated	 Original
1921	 Weighted 3A/7B--estimated	 Original
1922	 All same—equal weight	 Original
1923	 Weighted 3A/7B--estimated	 Original

The SVD Theorem: Decomposing Matrices
Our strategy in this paper owes its starting point to a powerful 

tool in linear algebra – the Singular Value Decomposition (SVD) – 
and to strategies based on it and explored by one of the authors in 
his dissertation (Long, 1994) and in a subsequent publication (Long 
and Long, 2001). The latter publication introduced a strategy for 
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interpolating (or estimating) a matrix that was described as “skinning 
the matrix, even though we are putting a skin on rather than taking 
one off.” The authors emphasized the flexibility of their skinning 
scheme, which allowed for an unlimited number of different skins. 
Each choice of one-dimensional interpolators gives rise to a dif-
ferent skin, with characteristics derived from the one-dimensional 
interpolators.  Long in his dissertation explored the generalization 
of the SVD to tensors. In this paper, we explore the generalization 
of the SVD to tensors, but “skin the tensor” as well. In particular, 
we take advantage of the flexibility of the interpolation scheme to 
explore one-dimensional linear regressors to create the skin for the 
tensor. One could then use the error bounds of the regressors to 
deduce error bounds for the tensor.

The Singular Value Decomposition theorem has been called  
“The Fundamental Theorem of Linear Algebra” by one of the mas-
ters of the subject (Strang 1993). It states that a real matrix can be 
decomposed into a product of orthogonal matrices and a diagonal 
matrix, A = U 

V

VT where V is diagonal with positive entries λ1,
...,λ

n
; 

these are called the singular values, ordered from largest to smallest 
(with possible ties and zero values), and U and V are orthonormal 
(have columns mutually orthogonal and of unit length).

Another way of representing the “decomposition” is as a sum of 
outer products: this is the important representation of that we will 
focus on. The SVD says that

		

where u
i  
and v

i
 the columns of U and V. The terms λk uk vk

T  are the 
skeletons of the “skins” mentioned above. As before, we may “throw 
away” some of the outer-products (generally those corresponding to 
the smallest singular values) and write

where k<m. We then model A with A* (having removed what we 
construe as noise). A number of imputation methods are based 
on this SVD technique of ignoring the “noise” of all but the most 
important singular values (Arciniegas-Alarcon, et al. 2014). We 
use an imputation technique that fits into this class of algorithms. 
We choose missing values so that the first singular value λ1 is as 
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axis. If the minor axis were 0 in size, corresponding to a singular value of 0, the circle would be 
compressed into a line segment and the matrix would be rank 1. 
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the smallest singular values) and write 

$ ≈ $∗ ≡ -./.0.
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) , 
where 7 < 9. We then model $ with $∗ (having removed what we construe as noise). If we are 
really aggressive, we might set all but the very largest singular value to zero, and reconstruct our 
matrix as a single outer-product: 

 $∗ = -./.0.
) 	

This is the very simplest type of matrix: a rank-one matrix. If matrix $ is rank-one, then we can 
separate it into two one-dimensional components – one (/) capturing all the behavior of the 
species, which is independent of region (captured by the vector 0). The behavior of species and 
region is essentially disentangled. 
 
To the extent that a matrix SVD is dominated by one singular value, that matrix is closer to rank-
one. To measure “rank-oneness”, we compute the ratio 
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≤ 1.   (1) 

The closer this ratio is to 1, the closer the matrix is to rank-one (and hence the simpler its 
structure). It is this notion of simplifying a matrix’s structure that suggests our imputation 
strategy. 
 
 
 

The SVD Theorem: Rank-One Approximation 
Consider the matrix $ as five rows of species over nine columns representing regions. Suppose 
that we were missing two values in a particular year’s data matrix (call them D and E). Then we 
might write 

$(D, E) = -.(D, E)/.(D, E)0.(D, E)
) + ⋯+ -3(D, E)/3(D, E)03(D, E)) (2) 

where the components of the SVD are functions of D and E. The components of / represent the 
relative times of arrival of each species on a regional basis, and components of 0 represent the 
relative ordering of times of arrival for a single species over the locations. 
 
The problem (and a hint to its solution) is illustrated in Figure 8. The strategy is suggested in part 
by the square root dividing the data matrix: it represents the Frobenius norm of the matrix (equal 
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relative times of arrival of each species on a regional basis, and components of 0 represent the 
relative ordering of times of arrival for a single species over the locations. 
 
The problem (and a hint to its solution) is illustrated in Figure 8. The strategy is suggested in part 
by the square root dividing the data matrix: it represents the Frobenius norm of the matrix (equal 
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large as possible relative to the other singular values. In particular, 
we maximize .

MODEL BUILDING

MacKay gave us some help in our modeling process. He was a 
thorough scientist, whose preliminary analysis and speculation pro-
vided us some direction (MacKay 1901). He speaks to the importance 
of altitude, the proximity to the Atlantic, to the general SW to NE 
trend, to differences in sampling patterns; concluding:
	 [t]he manner in which the other curves intersect each other have 

also their explanations. But we are not yet in a position to be 
able to state them.

	 The general trend is seen in the later flowering as the counties 
lie north and east. There is a general conformity in this trend 
between the eight plants which fall into four groups, the Mayflower 
averaging 113.01 (24th April), the Dandelion and Strawberry 
137 + (18th May), the Wild Cherry, Blueberry, Buttercup and 
Apple 154 + (4th June), and the Lilac 165 + (15th June).

	 A general trend is also seen in passing from Guysboro in the east 
back to Cumberland in the west; although moving on the whole 
northward, the flowering becomes earlier. A similar change takes 
place in passing from Richmond to Cape Breton. This latter is 
more remarkable, for Cape Breton is not only north but also 
east of Richmond. This seems to suggest that the observers in 
Guysboro and particularly in Richmond, might not have been 
so keen in the search for the first flowering as those in Cumber-
land and Cape Breton. The small number of observers in these 
counties also suggests such a possibility. But by reference to 
the table, it will be seen, that as a rule, in counties where the 
observation stations are so numerous that ten could be selected 
from the coast, ten from the low inlands, and ten from the high 
inlands, the earliest flowering is on the low inlands, then on 
the coast, and latest on the highlands. It must be remembered, 
that there is a very great difference in the altitudes of what are 
called the low and high inlands in the different counties.
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Another way of representing the “decomposition” is as a sum of outer products: this is the 

important representation of 𝐴𝐴 that we will focus on. The SVD says that 

  𝐴𝐴 = 𝜆𝜆,𝑢𝑢,𝑣𝑣,
* + ⋯+ 𝜆𝜆3𝑢𝑢3𝑣𝑣3

* 	

where the 𝑢𝑢4	𝑎𝑎𝑎𝑎𝑎𝑎	𝑣𝑣4	are	columns of U and V. The terms 𝜆𝜆;𝑢𝑢;𝑣𝑣;
* are the “skins” mentioned above. 

As before, we may “throw away” some of the outer-products (generally those corresponding to the 

smallest singular values) and write 

𝐴𝐴 ≈ 𝐴𝐴∗ ≡ 𝜆𝜆,𝑢𝑢,𝑣𝑣,
* + ⋯+ 𝜆𝜆;𝑢𝑢;𝑣𝑣;

*, 

where 𝑘𝑘 < 𝑚𝑚. We then model 𝐴𝐴 with 𝐴𝐴∗ (having removed what we construe as noise). A number 

of imputation methods are based on this SVD technique of ignoring the “noise” of all but the most 

important singular values (Arciniegas-Alarcon, et al. 2014). We use an imputation technique that 

fits into this class of algorithms. We choose missing values so that the first singular value 𝜆𝜆, is as 

large as possible relative to the other singular values. In particular, we maximize BC

DBC
EF⋯FBG

E
 . 

 

MODEL BUILDING 

  MacKay gave us some help in our modeling process. He was a thorough scientist, whose 

preliminary analysis and speculation provided us some direction (MacKay 1901). He speaks to the 

importance of altitude, the proximity to the Atlantic, to the general SW to NE trend, to differences 

in sampling patterns; concluding: 

[t]he manner in which the other curves intersect each other have also their explanations. But 

we are not yet in a position to be able to state them. 
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	 From such considerations, it is proposed in future to divide the 
Province into meteorological districts and subdistricts, instead 
of counties – the subdistricts being the coast belt, low inland 
belt and highland belt of each district; each district including 
a simple meteorological region or geographic slope.

	 Among the peculiarities shown by these curves are, for instance, 
the lateness of the Strawberry as compared with the Dandelion 
in Shelburne, Queens and Guysboro; and its advanced appear-
ance in Kings, Cumberland, Inverness and Victoria. Does the 
breath of the Atlantic retard the flowering of the Strawberry as 
compared with the Dandelion?	

	 It also appears that the southern and sea surrounded Yarmouth 
is favorable to the early flowering of the Mayflower, but com-
paratively not so favorable to the Lilac. The manner in which the 
other curves intersect each other have also their explanations. 
But we are not yet in a position to be able to state them.

	 The stations of observations are, necessarily, not the same in 
each county each year. It is therefore possible that the pheno-
chrons might be affected by a change in the relative number of 
coastal, inland and highland stations.

	 As all these observations are bound carefully into a large volume 
for each year, anyone having the time can use the facts recorded 
in any combination promising the most useful results. The pres-
ent selection of ten plants, and the comparison of their flowering 
phenochrons in each county is merely a sort of preliminary or 
provisional testing of the possibilities and probably value of 
such observations – sufficient to interest the observers while 
they are developing accuracy – and a record of facts for future 
generalization.

	 ….

	 In the meantime we can make no mistake in recording and pre-
serving as many accurate local phenological facts as possible. 
In a few years we shall be better able to estimate their value for 
many purposes.
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THE SINGULAR VALUE DECOMPOSITION (REPRISE)

Tilted Geographical Coordinates
The SVD is useful for separating out the three dimensions of our 

data tensor: the species, the region, and the year. At the outset we 
did an analysis of FAT of each species by region, year after year, as 
a function of latitude and longitude. As mentioned previously, we 
expected the latitudinal component to be significant, representing as 
it does the northerliness of a region. We were surprised to discover, 
however that as often as not longitude played a role. A glance at  
Fig 4 shows a couple of reasons for why this might be:

1.	 Longitude is a proxy for latitude: the further east one goes, the 
further north one goes. So the two measures are confounded.

2.	 Longitude represents how far the province juts out into the  
Atlantic Ocean. Ocean currents vary about Nova Scotia  
(Wu and Tang 2011), and there are several different major bodies 
of water that impact the province. Hence, longitude may play  
a more complex role.

However, the first of the two issues impelled us to try rotating 
the coordinates to align one along the major axis of Nova Scotia 
(thinking of it as an ellipsoid) and the other along the minor axis. 
These tilted longitude/latitude coordinates were then used for fur-
ther modeling, and we found that we were far more likely to achieve 
significant results using them. Table 2 illustrates a case for which 
neither geographical coordinate was significant on its own, but for 
which the tilted coordinates produced a significant and useful model.

A Tensor Version of the SVD
A precise analogue for the SVD does not exist for the tensor case 

(Kolda and Bader 2009). However, we can directly extend one method 
for constructing the SVD to tensors, leading to the method we call 
the TSVD – Tensor SVD.

One method for constructing the SVD of m×n matrix A of rank r 
entails maximizing the scalar product

	
over all unit vectors u and v. This will succeed because we are maxi-
mizing this product over a closed and bounded set (the cross-product 
of spheres in m and n dimensions, respectively).
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Once we compute u1 and v1 for the maximum value λ1 of uTAv,

we remove that weighted outer-product

and then repeat the process on matrix A1. We continue recursively 
removing these weighted outer-products where λk is the maximum 
value of uTAk-1 

v over all possible vectors u and v. Unit vectors uk 
,
 

vk are the ones that realize this maximum value

Once we have found λk, uk, vk, we use them to construct a lower 
rank matrix.

Because each subtraction reduces the rank by one, eventually the 
resulting matrix is the zero matrix, so

This is just a different representation of the singular value decom-
position theorem, in the form of a method.
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and then repeat the process on matrix $.. We continue recursively removing these weighted 
outer-products where -6 is the maximum value of /)$6O.0 over all possible vectors / and 0 
Unit vectors /6, 06 are the ones that realize this maximum value 

-6 = /6
)$6O.06 

Once we have found -6, /6, 06, we can use them to construct a lower rank matrix. 

$6 = $6O. − -6/606
) 

Because each subtraction reduces the rank by one, eventually the resulting matrix is the zero 
matrix 

$ =P-6/606
)

Q

6R.

 

This is just a different perspective on the singular value decomposition theorem. 
 
We can carry out this same strategy in the more general tensor case. In our case we have a 3-
tensor given by the three-dimensional data set of (STUVWUS, MUXWYL, EUZM). 

[ =PS6⨂M6⨂E6

]

6R.

 

where the tensor product ⨂ is this same outer product. In the tensor case the value of ^ is not as 
well defined as in the matrix case, and there are other important distinctions between the 
decompositions in the tensor and matrix cases.1 

 
THE FINAL TENSOR MODEL 
Having written our data tensor [ as a sum 

[ =PS6⨂M6⨂E6

._

6R.

 

we now proceeded to model the different dimensions (species, region, year) in three different 
ways. 
 
The species vectors were left as is: we didn’t do any modelling for those. Our efforts were 
focused on the other two dimensions, region and time. We used linear regression to model the 
regions vectors as functions of tilted longitude and latitude (`aYLX and `aZ`), whereas the time 
series (year) vectors were modelled as functions of climate variables (notably average monthly 
temperatures up to a year prior to flowering, and sea ice off the coast of Newfoundland. 
 
Whereas the climate variables were included only linearly, we allowed quadratic terms for the 
region model (`aZ` and `aYLX variables). We assumed that we might have coastal effects: and 
since the `aZ` and `aYLX coordinates run along the “major axis” and “minor axis” of Nova 
Scotia, we felt that a linear model would not be appropriate – a planar model of FATs across 
Nova Scotia – but a parabolic model would allow for one value along the coasts on opposite 
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Table 2 	 This example regression illustrates a case for which neither geographical 
coordinate was significant on its own, but for which the tilted coordinates 
produced a significant and useful model. Tilted longitude is significant, 
as is the intercept term. The issue is that latitude, which we along with 
MacKay suspected would be the primary determinant of climate, is 
confounded by longitude. More northerly parts of Nova Scotia are more 
easterly, and vice versa.

Parameter	 Estimate	 Std. Error	 t-value	 Pr(>|t|))

(Intercept)	 55.568	 291.197	 0.191	 0.855
Latitude	 2.978	 4.244	 0.702	 0.509
Longitude	 1.365	 1.699	 0.804	 0.452

Tilted Parameter	 Estimate	 Std. Error	 t-value	 Pr(>|t|))

(Intercept)	 97.1914	 2.4968	 38.926	 1.92e-08
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We can carry out this same method in the more general tensor 
case. In our case we have a 3-tensor given by the three-dimensional 
data set of (species, region, year).

where the tensor product 
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 is this same outer product. In the tensor 
case the value of N is not as well defined as in the matrix case, and 
there are other important distinctions between the decompositions 
in the tensor and matrix cases.

THE FINAL TENSOR MODEL

Having written our data tensor T as a sum of 16 such terms,

we proceeded to model the different dimensions (species, region, 
year) in three different ways.

The species vectors were left as is: we didn’t do any modelling for 
those. Our efforts were focused on the other two dimensions, region 
and time. We used linear regression to model the regions vectors as 
functions of tilted longitude and latitude (tlong and tlat), whereas 
the time series (year) vectors were modelled as functions of climate 
variables (notably average monthly temperatures up to a year prior 
to flowering, and sea ice off the coast of Newfoundland).

Whereas the climate variables were included only linearly, we al-
lowed quadratic terms for the region model (tlat and tlong variables). 
We assumed that we might have coastal effects: and since the tlat 
and tlong coordinates run along the “major axis” and “minor axis” of 
Nova Scotia, we felt that a linear model would not be appropriate – a 
planar model of FATs across Nova Scotia – but a parabolic model would 
allow for one value along the coasts on opposite sides of the “heights 
of Nova Scotia”, and a different value for the heights themselves.  
Fig 5 shows how one quadratic model appears in the province.

Having modelled both these two dimensions, we arrive at a model 
of that we represent schematically as
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T =
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k=1

sk ⊗ rk ⊗ y
k

T =
16∑

k=1

sk ⊗ rk ⊗ y
k

T a(tlong, tlat, climate) =
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λi(j)si(j)ri(j)(tlong, tlat)yi(j)(climate)
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where time is embedded in the climate variables. Details of the 
modeling procedure are provided in an appendix. 

RESULTS

Because we now have a continuous model of species as a function 
of location and time, our model can be used to forecast FATs for 
any year for which we have the same climate data, at any location.

How the Model Performs
Model predictions for the FATs of the original data are given 

in the succession of small multiples shown in Fig 6. The data and 
model fits are available for visual comparison for all five species 
across all 23 years.

As one can plainly see, some species are better reconstructed 
generally than others. For example, it is clear that mayflower is 
better reconstructed than blackberry, as a rule. That being said, in 

Fig 5	 This illustrates our projections of First Arrival Time for Mayflower for 
the year 1901. Numbers represent day since beginning of the year. One 
can see the advantage of the quadratic FAT model over a linear model: 
the isoFATs bend over the highlands of Nova Scotia and wrap from coast 
to coast.
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some years, blackberry may be better predicted than mayflower, 
etc. Average error in a species prediction, by region, is a reasonable 
“diagnostic” to provide for using model predictions in the future. 
The average error across the entire data set is 2.7 days.

Fig 6	 Model results (comparison with data) for the FATs from 
1901-1923. We use Tufte's "small multiples" (Tufte 2004) 
to help us gauge the effectiveness of our model over the 
entire span of the data.



151A CLIMATE CHANGE SIGNAL IN NOVA SCOTIA

Year, region, and species means of absolute errors across the years 
are given in Tables 3, 4, and 5. As one can see, strawberry is best 
reconstructed, and blackberry worst. Among regions, all are roughly 
similar, although the combined regions (4 and 5 in the original data) 
have the largest mean absolute deviation: 3.11 days.

Comparison with Predictions of Others
A recent paper in the Proceedings (Hill and Garbary 2013) caught 

our eye, entitled “Early spring flowering in Nova Scotia: an extreme 
spring is reflected in advanced flowering”. It features data on many 
species of flowering plants, but in particular it included recent data 
(2012) on two of our species: mayflower and strawberry. They pro-
vided coordinates for their search (latitude and longitude), so we were 
able to generate predictions of first flowering of those two species.  
Our predictions were within five days in each of the cases (see Table 
6), and biased toward predicting earlier FATs, rather than later ones. 
Hill and Garbary note that “...since all of these records were based 
on opportunistic sampling across a wide geographic area (northern 
Cape Breton to the Annapolis Valley), we do not claim that the dates 
represent first flowering of the species.” The implication is that the 
observed dates should be later than the actual FAT. For that reason, 

Table 3	 Error by region (in days).

Region	 Average Error (Days)

Yarmouth and Digby	 2.77
Shelburne, Queens, and Lunenburg	 2.45
Annapolis and Kings	 2.37
Hants and Colchester	 2.44
Halifax and Guysboro	 2.81
Cobequid Slope	 2.76
Northumberland Straits Slope	 2.71
Richmond and Cape Breton	 2.75
Bras d’Or and Inverness Slopes	 3.11

Table 4	 Error by species (in days).

Species	 Average Error (Days)

Mayflower	 3.02
Strawberry	 1.88
Apple	 2.22
Lilac	 2.67
Blackberry	 3.64
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Table 5	 Error by year (in days). 1918, 1914, 1922, 1903, and 1923 were the most 
poorly reconstructed. The run from 1904-1913 was fairly well recon-
structed.

Year	 Average Error (Days)

1901	 2.17
1902	 3.04
1903	 3.29
1904	 2.17
1905	 2.59
1906	 2.50
1907	 2.46
1908	 2.08
1909	 2.65
1911	 2.69
1912	 2.43
1913	 2.64
1914	 3.19
1915	 2.59
1916	 2.82
1917	 2.30
1918	 3.11
1919	 2.34
1920	 2.55
1921	 2.50
1922	 3.24
1923	 3.76

Table 6	 Predictions against data (Hill and Garbary 2013), including predictions 
for 2012 (for which “temperatures for the late winter and spring of 2012 
in Nova Scotia were considerably elevated relative to climate normal”) 
and for the years adjacent to 2012. As one can see, our predictions sug-
gest that 2012 was, indeed, anomalous, and that flowering should have 
occurred about six days earlier due to the warmer temperatures.

Location	 Species	 2012	 2012	 2011	 2013 
		  Prediction	 Observation	 Prediction	 Prediction

Antigonish	 Mayflower	 April 10	 April 15	 April 16	 April 17
Antigonish	 Strawberry	 April 25	 April 28	 May 1	 May 2
Annapolis	 Strawberry	 April 17	 April 16	 April 21	 April 23

the bias in our results towards earlier dates (in Antigonish, at least) 
is encouraging.

A publication referenced in the Hill and Garbary paper, en-
titled “Spring-flowering herbaceous plant species of the decidu-
ous forests of eastern Canada and 20th century climate warm-
ing” (Houle 2007) performed regressions of flowering times of 
18 different plants from eastern Canada, from 1900 to 2000. 
“...Results show a 2-6 days advance in flowering date over 100 
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years, depending on the region considered (corresponding to a 2-3 
days advance per 1°C); these values are somewhat lower than those 
published in other studies, but still support the increasing body of 
literature on the effects of climate warming on plant phenology.”

We highlight the predictions of Houle’s work, which are in exact 
accord with our own conclusions: 2-6 days advance per century 
(Figs 7 & 8). He proceeded by regressing on data; we proceeded by 
regressing on model predictions. Although we used different species, 
our general agreement is satisfying.

DISCUSSION

We have produced a model that predicts First Appearance Times 
(FATs) of flowering of five plant species, in Nova Scotia, Canada. 
The model is a function of average monthly temperatures and winter/
spring ice coverage in Newfoundland.

The model was generated by fitting a tensor model to the tensor 
of data with three dimensions: species, region of Nova Scotia, and 
year, with five species, nine regions, and 22 years of data. The data 
were first cleaned and a few values imputed using a technique based 
on the Singular Value Decomposition (SVD).

The data tensor was decomposed into a sum of rank-one tensors, 
each of which is an outer-product of three vectors (one in each dimen-
sion – species, region, and year). For each rank-one tensor, a model 
was constructed using linear regression on two of the dimensions: 
region and year. The region model was a function of longitude and 
latitude; the year model was a function of average monthly tempera-
tures and winter/spring ice coverage in Newfoundland. The rank-one 
tensors were then replaced with a vector of five functions, each of 
which represented one species. When summed in the same fashion 
as the rank-one tensor decomposition, we produced a set of five 
functions, each of which predicts FAT based on these geographic 
and climatic variables.

CONCLUSIONS

Our models as shown in Figs 7 and 8 suggest that climate change 
over the past 100 years (increasing temperatures, in particular) are 
causing some plants to come into flower earlier (2-6 days earlier, 
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with all five plants that we studied showing a significant trend to 
earlier flowering).

FUTURE WORK

Moving forward, we will:
Use a simpler and faster alternative method of tensor decomposi-

tion than the one we used here, to see how results compare.
Add additional summary data from MacKay’s published reports. In 

addition, we plan to add two species which overlap with the Hill and 
Garbary paper (Hill and Garbary 2013), and are well-represented in 
the MacKay data, to see if our predictions continue to hold up well.

Include comparisons of our model predictions with other data in 
the literature, including Plant-Watch data (Liette Vasseur 2001), and 
even MacKay’s own data (we did not include his summaries prior 
to 1901, because they were not completely formulated in terms of 
his citizen science project prior to 1901).

Fig 7	 Model projections for Mayflower for one hundred years, showing a signifi-
cantly earlier flowering time (about 4 days/year).
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year the mean matrix of the time series of the five species and nine 
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matrix of the time series of the five species and nine regions (Table 7): 

 

𝑇𝑇[ = 𝑇𝑇 − 𝑀𝑀_×` ⊗ 1CC 

 

The matrix crossed with the one-vector of length 22 represents a tensor where each slice 

along the temporal dimension is the same – containing the mean FATs for each species in 

each region. Thus, 𝑇𝑇]  represents not FATs, but rather the difference in FAT from the mean 

FAT for that species in that region. As a consequence, the mean of each temporal column 

of tensor 𝑇𝑇]   is 0. 
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	 The matrix crossed with the one-vector of length 22 represents a tensor 
where each slice along the temporal dimension is the same – contain-
ing the mean FATs for each species in each region. Thus, Tα represents 
not FATs, but rather the difference in FAT from the mean FAT for that 
species in that region. As a consequence, the mean of each temporal 
column of anomaly tensor Tα is 0.

	  Our objective is to model T by modeling the anomaly tensor Tα and 
the matrix M separately: M as a function solely of latitude and longi-
tude, and Tα as a function of latitude, longitude, and climate variables.

3.	 Latitude and longitude are “tilted” to align with the shape of Nova  
Scotia, which runs generally southwest to northeast (discussed in the 
text). So our regressions use “tlong” and “tlat”, defined as

	 tlong=cos(20) (longitude+65.8094)-sin(20)(latitude-41.1496)
	 tlat=sin(20) (longitude+65.8094)+cos(20)(latitude-44.1496)

	 The choice of a 20-degree tilt was made by visual examination; the  
centroid was simply chosen to lie within Nova Scotia, along what we 
perceived to be the major and minor axes.

4.	 To model M we first decompose M using the SVD, producing the usual 
rank five decomposition

	 The ui we may construe as species-related, and we do not model those; 
the vi are region-related, and we model by regression on latitude, lon-
gitude, and their squares. 

	  The first three singular products contained vi which produced a 
significant p<.05 model, whereas the last two did not. Therefore, the 
first three outer products only were used to create the vector function 
of latitude and longitude (a mean surface, or rather a set of five of 
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Table 7	 The mean matrix M, of mean FATs of the time series of FATs for the 
five different species of plants over the nine regions (moving generally 
southwest to northeast, hence illustrating the general trend toward later 
flowering along that axis).

	 mayflower	 strawberry	 apple	 lilac	 blackberry

94.4	 121.5	 145.8	 156.4	 163.7
98.6	 123.8	 146.9	 156.5	 164.4
102.2	 123.4	 145.0	 154.2	 163.4
106.2	 125.9	 149.5	 157.5	 164.9
108.3	 128.4	 155.8	 163.9	 167.7
111.9	 127.2	 152.5	 159.3	 166.6
112.7	 129.0	 151.0	 158.3	 166.0
116.4	 133.0	 161.9	 169.2	 168.4
117.9	 131.8	 158.3	 165.5	 167.5
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them – one for each species). We give below an explicit representa-
tion of M as a vector model, composed of a sum of three pieces, each 
comprised of the product of a singular value weighting a dot product 
of two vectors, all of which scales the vector of species weights ui on 
that outer-product pair: 
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5.	 The model for the anomaly tensor Tα is a little more complicated. 
We decomposed it, using the procedure described in the text, to obtain

	

	 where s
i
, r

i
, and y

i
, are the ith species, region, and year vectors, respec-

tively. They are essentially singular vectors of a tensor version of the 
singular value decomposition. 

	  We reduced our study to just the first sixteen products by considering 
only those outer-products that showed some dependence on climate or 
region variables. However, not all of the first sixteen showed dependence 
on both climate and region: twelve of the sixteen products produced 
models that were simultaneously significant for r

i
 and y

i
 (otherwise a 

particular outer-product in the sum is replaced by the 0 tensor, which 
is the null model – these were products 6, 9, 10, and 11 – ordered by 
their relative importance in the decomposition). 

	 The vector model form FAT anomaly thus becomes a sum of twelve 
vector functions, 

	 where the models for region vectors (and their weights), obtained by 
linear regression, are given in Tables 8 and 9 below; the particular 
values of λ used are given in Table 10. Table 11 contains the weights 
on each outer-product by species. i(j) represents the jth retained index 
skipping the four listed in Table 10 as insignificant. “Climate” is 
used here as shorthand, by which we mean temperature and sea ice 
extent values, which were obtained using relevant data from the years 
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Table 8	  Results of backward-stepwise regressions for the 12 significant region 
vector models. The model r i(j) (tlong, tlat) is obtained by taking the 
inner-product of the vector given by (1, tlat, tlong, tlat2, tlong2) and the 
vector given by the coefficients listed below (missing coefficients are 0).  
Note the absence of any linear dependence on the square of the tilted 
latitude in the anomaly tensor (although the mean surface contains it as 
a predictor). 

j	 outer-product index i(j)	 intercept	 tlat	 tlong	 tlat2	 tlong2

1	 1	 0.316	 0.112			 
2	 2	 0.331				  
3	 3	 0.215				    -0.0271
4	 4	 0.326		  -0.131		
5	 5	 -0.0175				  
6	 7	 -0.479		  0.0687		
7	 8	 -0.114	 0.759			 
8	 12	 -0.0109				  
9	 13	 0.0295				  
10	 14	 0.114	 -0.730			 
11	 15	 0.503		  -0.505		  0.0734
12	 16	 -0.0230				  

over which the FAT dates were collected. Temperature records were  
obtained from Environment Canada for Parrsboro, Halifax, Sydney, 
and Yarmouth, and then averaged to obtain an estimate for Nova Scotia  
generally. These locations had the longest records contemporaneous  
with our FAT data, with some few missing values. Newfoundland ice 
values were obtained from Brian T. Hill, formerly of Environment 
Canada, “an estimation of the sea ice extent in the winter months off the 
east coast of Newfoundland and over the Grand Banks.” (Hill, personal 
communication)

6.	 In the end, then, the vector model for T (FAT itself, for the five species 
as a function of location and climate variables) is obtained simply as 
the sum of two length-five vector models:
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Table 9	 Results of backward-stepwise regressions for the 12 significant year vec-
tor models. July and September temperatures which occur in the models 
are for the year prior. The model yi(j)  (climate) is determined by taking 
the inner-product of the two vectors indicated below, which creates a 
scalar function of the chosen climatic variables. 

Outer-product index	 Predictors 
		  Coefficients

1	 1	 Apr Ice	 Jan Temp	 Mar Temp	 Apr Temp	 May Temp	 Sep Temp 
	 0.751	 2.896E-7	 8.526E-3	 –5.350E-2	 –8.155E-2	 –0.142	 4.461E-2

2		  	       1	 Apr Temp	 May Temp 
			   –0.767	 –0.102	 0.131

3		  	       1	 Mar Ice	 Apr Ice	 May Temp 
			   –0.757	 –1.109E-6	 1.123E-6	 9.731E-2

4	 1	 Jan/Feb Ice	 Mar Ice	 Feb Temp	 Mar Temp	 Apr Temp	 Jul Temp 
	 1.26	 1.517E-6	 –1.883E-6	 1.290E-6	 9.865E-2	 –0.111	 –9.307E-2

5			   	     1	 Jun Temp 
				    –1.86	 0.144

7			   	     1	 Jan/Feb Ice 
				    0.401	 –1.389E-6

8	 1	 Jan/Feb Ice	 Mar Ice	 Feb Temp	 Mar Temp	 Apr Temp	 Jul Temp 
	 –3.00	 9.872E-7	 –2.212E-6	 –8.615E-2	 –5.168E-2	 7.938E-2	 0.152

12		  1	 Apr Ice	 Jul Temp 
		  2.10	 1.052E-6	 –0.141

13		     	      1	 Jun Temp 
			   –1.33	 0.103

14	 	 1	 Jan Temp	 Mar Temp 
		  –0.189	 –5.205E-2	 5.658E-2

15	 	 1	 Mar Temp	 Apr Temp 
		  0.518	 7.20E-2	 –0.117

16		  	       1	 Jan/Feb Ice
		   	 –0.344	 1.191E-6
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Table 10	  Singular values, and those that we included based on their simultaneous 
dependence on both place and climate.

	Outer-product index	 Singular Value	 Used (Y/N)

	 1	 124.419	 Y
	 2	 73.0337	 Y
	 3	 40.7310	 Y
	 4	 32.0933	 Y
	 5	 31.4943	 Y
	 6	 28.3814	 N
	 7	 26.9661	 Y
	 8	 26.5059	 Y
	 9	 20.8977	 N
	 10	 20.7605	 N
	 11	 18.4311	 N
	 12	 18.2133	 Y
	 13	 17.3022	 Y
	 14	 16.9779	 Y
	 15	 15.4649	 Y
	 16	 14.9188	 Y

Table 11	  Species weights for each of the twelve outer-products used in the model. 
These might be studied to interpret the outer-product pairs biologically, 
as one would do in a factor analysis.

	mayflower	 strawberry	 apple	 lilac	 blackberry

	 0.482	 0.492	 0.526	 0.459	 0.195
	 0.667	 0.300	 -0.334	 -0.504	 -0.315
	 -6.301E-2	 -0.113	 -0.188	 -0.284	 -0.931
	 -0.440	 -0.161	 -0.647	 -0.594	 -9.621E-2
	 0.224	 9.209E-2	 -1.057E-2	 -0.168	 -0.955
	 -0.677	 0.616	 0.173	 -0.172	 -0.321
	 -0.520	 -0.414	 -0.348	 -0.366	 -0.550
	 0.440	 0.123	 0.236	 0.184	 -0.838
	 0.552	 0.205	 -0.267	 -0.720	 -0.252
	 -0.865	 -9.634E-2	 -0.125	 0.476	 2.309E-2
	 -0.817	 -8.398E-2	 0.537	 0.194	 -7.051E-3
	 -0.406	 -0.424	 -0.416	 -0.471	 -0.511
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DATA MANIPULATION
•	 Implementations of our SVD imputation is available in three different 

programming languages—Mathematica, Python, and R:
	 www.nku.edu/~wilkinson/links/MacKay/software/
•	 Our original data set of FATs of the five chosen species transcribed from 

the Proceedings, 1901-1923, is contained in this csv file of First Arrival 
Times: norsemathology.org/laura/DatesofArrival.csv

•	 Our final data set of FATs is (following cleaning, region combining, and 
data imputation) is contained in this csv file of First Arrival Times:

	 norsemathology.org/laura/DatesofFAT.csv 

ADDITIONAL CODE FOR REPLICATING RESULTS
•	 Mathematica file containing graphics of SVD factors:
	 norsemathology.org/laura/SVDCoefficientsUpdate.nb 




